選擇特殊符號
選擇搜索類型
請輸入搜索
環(huán)保家裝是指裝飾裝修后的空氣指標(biāo),如甲醇、苯以及總化發(fā)行有機化合物(TOVC)等含量符合或優(yōu)于國家規(guī)定的各項環(huán)保檢測標(biāo)準(zhǔn)。甲醛主要來源于人造板材、膠粘劑和涂料等。它無色有刺激性氣味,吸入可造成咽痛、眼...
集成墻面集成墻面是2010年新推出一種墻面裝修材料,最新材料采用竹、木纖維,高分子防水防火材料,晶石粉高溫壓制而成;這兩種集成墻面表面除了擁有墻紙,涂料所擁有的彩色圖案,還有其最大特色就是立體感很強,...
鋼筋算量內(nèi)借用平均截面計算吧土建算量內(nèi)可以借用異形構(gòu)件建模的
新型硬齒面環(huán)面蝸桿傳動研究
格式:pdf
大小:664KB
頁數(shù): 4頁
采用精確磨削TI蝸桿的砂輪,用類似直廓環(huán)面蝸桿或平面包絡(luò)環(huán)面蝸桿的磨削方法加工環(huán)面蝸桿,使該蝸桿和齒面形狀與砂輪曲面相同的蝸輪相配合,形成一種新型蝸桿傳動,給出了這種傳動蝸桿副齒面的數(shù)學(xué)模型,并通過計算機仿真得出了這種傳動蝸輪齒面上接觸線的形狀及分布特征,初步分析了其嚙合特點。
斜平面二次包絡(luò)環(huán)面蝸桿的實體仿真
格式:pdf
大小:664KB
頁數(shù): 3頁
介紹了用Matlab和Pro/E生成斜平面二次包絡(luò)環(huán)面蝸桿的過程,給出了仿真的具體思路和方法。
圓環(huán)面的中間平面是垂直于蝸輪軸線并包含蝸桿副連心線的平面。
取樣槍在電動執(zhí)行機構(gòu)的帶動下,貫穿煤粉管道取樣截面的整個直徑,根據(jù)等圓環(huán)面積法。離管壁越近煤粉通過量就越大,停留的時間就越長;而離管的中心越近煤粉通過量就越小,停留時間越短,管中心煤粉通過量可視為零。實踐證明煤粉取樣按等圓環(huán)面積法,所取得的樣品最具有代表性。如圖1所示 等圓環(huán)面積法
電腦繪制的ATLAS探測器剖視圖展示出內(nèi)部各種設(shè)備。
μ子譜儀:
(1)受監(jiān)控漂移管
(2)薄隙室
磁鐵系統(tǒng):
(3)端冒環(huán)狀磁鐵
(4)外筒層環(huán)狀磁鐵
內(nèi)部探測器:
(5)躍遷輻射跟蹤器
(6)半導(dǎo)體跟蹤器
(7)像素探測器
量能器:
(8)電磁量能器
(9)強子量能器
ATLAS探測器是由以相互作用點為中心的一系列同中心軸圓柱殼型設(shè)備和其兩端的圓盤型設(shè)備所組成,主要分為四個部分:“內(nèi)部探測器”(Inner Detector)、量能器、μ子譜儀和磁鐵系統(tǒng)。其中每一個部分又細(xì)分為好幾層。各個探測器的功能相互補充 :內(nèi)部探測器精確地確定粒子的軌跡,量能器測量那些被截止粒子的能量,μ子系統(tǒng)則提供高度穿透性μ子的額外測量數(shù)據(jù)。磁鐵系統(tǒng)所產(chǎn)生的磁場促使帶電粒子在移動于內(nèi)部探測器時發(fā)生偏轉(zhuǎn),μ子譜儀可以從偏轉(zhuǎn)的曲率測得這些粒子的動量。
中微子是唯一不能直接被探測到的已知穩(wěn)定粒子;從仔細(xì)分析被探測到的粒子的動量不平衡現(xiàn)象,可以推斷出中微子的存在。為了實現(xiàn)上述目標(biāo),探測器必須是密封探測器,并必須探測到所有除了中微子以外的粒子,避免存在有任何探測盲點。保持探測器在質(zhì)子束附近的高輻射區(qū)具有良好性能,這是工程學(xué)的一個極大挑戰(zhàn)。
內(nèi)部探測器的內(nèi)圓柱面始于距離質(zhì)子束軸幾厘米的位置,而外圓柱面則向外延伸至1.2m半徑,在質(zhì)子束軸方向總長度為7m。通過探測散射出的帶電粒子與在各個不同位置的材料的相互作用,可以跟蹤這些粒子的運動,這是內(nèi)部探測器的基本功能,所獲得的數(shù)據(jù)能夠揭示粒子的種類及其動量方面的細(xì)節(jié)信息。由于內(nèi)部探測器沉浸于2Tesla磁場,移動于其空間的帶電粒子會發(fā)生偏轉(zhuǎn),其方向顯示了帶電粒子的電性,其角度則顯示了粒子的動量大小。根據(jù)軌跡的起點可以給粒子身份確認(rèn)提供有用的信息。例如,假若一系列粒子軌跡的初始點不是質(zhì)子與質(zhì)子的碰撞點,這就標(biāo)志著這些粒子是源于底夸克的衰變。
內(nèi)部探測器具有三個部分,下面將予以詳細(xì)說明。
像素探測器
像素探測器(Pixel Detector)是該探測器最里面的部分,包含了三個筒形層,在兩端的端帽(end-cap)分別有三個圓盤。對于每個粒子軌跡可以給出三個精確位置。在這些筒形層與圓盤上面,總共裝有1,744個同樣的模塊。每個模塊可以測量2cm×6cm的面積,其探測材料是由厚度為250μm的硅構(gòu)成。每個模塊包含16個用于讀出數(shù)據(jù)的芯片和其他相關(guān)電子元件。探測的最小單位是1個像素,尺寸為50μm×400μm。每個模塊含有47,268像素,專門設(shè)計用來在相互作用點附近精確跟蹤粒子,又有16個內(nèi)嵌的、用于讀出數(shù)據(jù)的芯片和其他相關(guān)電子元件。像素探測器總共有超過8千萬個數(shù)據(jù)讀出通道,是讀出通道總數(shù)的一半,如此龐大的規(guī)模在設(shè)計和工程方面造成了巨大挑戰(zhàn)。除此之外,由于像素探測器離相互作用點很近,會暴露于強烈輻射,這是另一個巨大挑戰(zhàn)。該探測器的每一個元件都必須進(jìn)行強化,從而能夠抵抗核輻射,在接受大量輻射之后還能保持正常工作。為了降低幅射線的損害,溫度必需保持在-6°C左右。
半導(dǎo)體跟蹤器
半導(dǎo)體跟蹤器(Semiconductor Tracker, SCT)是內(nèi)部探測器的中間部分。它含有四個筒形層,在兩端的端帽分別含有九個圓盤。對于每個粒子軌跡它可以給出至少四個精確位置;筒形層總共裝有2,122個相同模塊,而圓盤總共裝有1,976個模塊,大約分為三種不同類型。
半導(dǎo)體跟蹤器的概念和功能與像素探測器相似,但是最小單位的形狀不是微小像素,而是窄長細(xì)條。每個細(xì)條可以測量80μm×12.6cm的范圍,測量面積比較大,比較符合經(jīng)濟(jì)效益。每個筒形層模塊裝有兩層長方形硅傳感器。每個傳感器含有768個窄長細(xì)條,可以測量62mm×124mm的面積。圓盤模塊裝有兩層楔子形硅傳感器。每個傳感器含有768個高窄梯形細(xì)條,高度有6cm或12cm兩種,窄度從55μm到95μm。半導(dǎo)體跟蹤器總共具有620萬個讀出數(shù)據(jù)通道,總測量面積達(dá)到61m。
由于半導(dǎo)體跟蹤器測量粒子的范圍比像素探測器更大,具有更多的采樣點,大致相等的(雖然是一維的)精確度,對于基本跟蹤散設(shè)粒子在垂直于粒子束的平面的運動,它是內(nèi)部探測器的最關(guān)鍵儀器。
躍遷輻射跟蹤器2005年9月,躍遷輻射跟蹤器的筒形層部分已經(jīng)在地面組裝完畢,正在利用宇宙線進(jìn)行測試。
躍遷輻射跟蹤器(Transition Radiation Tracker, TRT)是內(nèi)部探測器的最外面部分,是由麥管跟蹤器(straw tracker)和躍遷輻射探測器共同結(jié)合而成的儀器。躍遷輻射跟蹤器主要有兩個功能:第一是準(zhǔn)確地跟蹤帶電粒子。第二是正確地辨識電子。
躍遷輻射跟蹤器的探測原件是漂移管(麥管),直徑為4mm。長度有144cm(筒形層部分)與37cm(端帽部分)兩種麥管。躍遷輻射跟蹤器總共擁有298,000條麥管。每個粒子軌跡會穿過平均35條麥管。軌跡位置測量的不確定度大約是200μm。雖然精確度不如前面所述的兩種探測器,但為了降低覆蓋大體積以及獲得躍遷輻射探測能力這兩種因素所帶來的高額成本,這較低的精確度是必要的犧牲。每一條麥管里都充滿了氙氣體混合物,當(dāng)帶電粒子經(jīng)過時,氣體混合物會被離子化。麥管保持著-1500V電壓,迫使陰離子朝著位于麥管中心軸的細(xì)導(dǎo)線移動,從而產(chǎn)生電流脈沖(信號)于鍍金的細(xì)鎢導(dǎo)線。分析這些出現(xiàn)脈沖信號的導(dǎo)線所形成的圖案,就可以確定離子運動的軌跡。
在筒形層部分相鄰麥管之間的空間,填滿了聚丙烯纖維。在端帽部分,相鄰麥管層之間,安插了聚丙烯箔紙層。當(dāng)運動速度接近光速的超相對論性帶電粒子通過不同折射率材料的界面時,會產(chǎn)生躍遷輻射光子。這主要是發(fā)生在聚丙烯材料與空氣的界面。通常,在躍遷輻射跟蹤器里,由電子產(chǎn)生的光子會在麥管給出較高的能量(~8-10keV),而由π介子產(chǎn)生的光子會給出較低的能量(~2keV)。因此,設(shè)定適當(dāng)?shù)哪芰块撝担ā?keV),從計算每個粒子由于躍遷輻射而給出光子能量超過閾值的次數(shù),可以有效地辨識出這粒子是否為超相對論性電子。
拍攝于2005年9月,強子量能器的主要筒形部分,正在等待被移入環(huán)狀磁體內(nèi)。拍攝于2006年2月,強子量能器的延伸筒形部分,正在等待被置入。強子量能器延伸筒形部分的彩色圖像。
載有電流的螺線管包圍在內(nèi)部探測器的外面,而量能器又包圍在螺線管的外面。設(shè)置量能器的目的是通過吸收粒子來測量它們的能量。這里有兩種基本的量能系統(tǒng):靠里的是“電磁量能器”,靠外的是“強子量能器”。二者都屬于“采樣式量能器”(sampling calorimeters)。在采樣式量能器里,吸收粒子能量產(chǎn)生粒子簇射的材料與與測量簇射能量的材料不同,并且隔開在不同的區(qū)域。這樣,可以選擇最具指定功能的材料。例如,高密度金屬可以在有限空間吸收粒子能量產(chǎn)生大量的粒子簇射,但這物質(zhì)不適用于測量粒子簇射所具有的能量。采樣式量能器的缺點是,有些能量沒有被測量到,因此,必須估計整體簇射能量。
電磁量能器(electromagnetic calorimeter)從涉及電磁作用的粒子中吸收能量,這包括了帶電粒子和光子。電磁量能器在測量能量吸收和能量分布位置這兩個方面都具有很高的精確度。粒子軌道和探測器入射粒子束軸之間的角度(確切地講叫贗快度),以及其與垂直平面之間的夾角,測量的精確度都可以達(dá)到大約0.025弧度。用于吸收能量產(chǎn)生粒子簇射的材料是鉛,而采樣的材料則是液態(tài)氬。為了促使系統(tǒng)足夠冷卻,電磁量能器必須安裝在低溫恒溫器里面。
那些能夠穿透電磁量能器,但會感受到強作用力的粒子(大多是強子),強子量能器(hadron calorimeter)會吸收它們的能量。強子量能器在測量能量吸收以及能量分布位置(大約只能精確到0.1弧度)這兩個方面的精確度都稍低。用于吸收能量的材料是鋼,通過閃爍磚片來采集能量數(shù)據(jù)。量能器的許多性能都綜合考慮到成本和效率(即費效,cost-effectiveness)。這套設(shè)備的體積很大,使用了大量的建筑材料。量能器的主要部分,即“閃爍磚片量能器”(scintillating tile calorimeter),內(nèi)半徑為2.28m,外半徑為4.25m,在粒子束軸向覆蓋距離達(dá)12m。
正在組裝中的μ子譜儀的銀灰色“受監(jiān)控漂移管”(monitored drift tube),其主要功能為測量軌跡徑向坐標(biāo)與動量。
μ子譜儀(muon spectrometer)是一個體積極大的軌跡跟蹤系統(tǒng),其筒型部分占有空間從量能器外面,半徑大約為4.25m處開始,一直延伸到超環(huán)面儀器最外層,即半徑大約為11m處,其端帽部分最外層(受監(jiān)控漂移管)與相互作用點之間的距離為21m。μ子譜儀必需具備有巨大的體積,才能夠精確測量μ子的動量,這些μ子已經(jīng)穿過了超環(huán)面儀器的其他設(shè)備。這一步驟很重要,因為這些μ子的探測是一系列有趣物理過程的關(guān)鍵,假設(shè)在一個事件中有些μ子被忽略,則事件的總能量將不可能被精確地測量出來。
μ子譜儀和內(nèi)部探測器的工作方式相似,可以通過被磁場偏轉(zhuǎn)的μ子軌跡來確定其動量;不過,對于這過程,μ子譜儀所使用的磁鐵構(gòu)型有所不同,空間精確度相較更低,體積卻大得很多。
μ子譜儀也是個觸發(fā)器(trigger),能夠按照簡單判據(jù)快速地決定,哪些事件比較有價值,應(yīng)該被記錄下來,哪些事件與實驗?zāi)繕?biāo)無關(guān),應(yīng)該被忽略。μ子譜儀具有單純識別μ子的功能。μ子譜儀大約擁有1百萬讀出通道,其各個探測器層總面積達(dá)到12,000m。
拍攝于2006年11月,正在建造中的位于外筒層的環(huán)狀磁鐵系統(tǒng)。八個不銹鋼真空容管將載有電流的超導(dǎo)線圈緊包在內(nèi),容管的外表油漆了橘色條紋圖案。這磁鐵系統(tǒng)是由一系列正八邊形內(nèi)金屬架與外金屬架共同鞏固與支撐。
ATLAS探測器的磁鐵系統(tǒng)細(xì)分為四個部分,在里層的螺線管磁鐵、在外筒層的環(huán)狀磁鐵、在兩個端帽的環(huán)狀磁鐵。這個磁鐵系統(tǒng)的長度有26米、直徑有20米,共存儲了1.6千兆焦耳(gigajoule)的能量。它會促使帶電粒子發(fā)生偏轉(zhuǎn),從而讓其他儀器測定它們的動量。這運動偏轉(zhuǎn)是由于帶電粒子受到了洛倫茲力,這個力的大小與粒子的運動速度成正比。由于LHC的質(zhì)子碰撞所產(chǎn)生的每個粒子都會以接近光速的速度運動,因此不同動量粒子所感受到的力大小相等。根據(jù)相對論,當(dāng)粒子運動速度接近光速時,動量和速度并不成正比;高動量粒子會發(fā)生些微偏轉(zhuǎn),而低動量粒子會發(fā)生顯著偏轉(zhuǎn),通過測量軌跡可以定量曲率,從而確定粒子的動量。
載有電流的超導(dǎo)螺線管會在內(nèi)部探測器的相互作用點區(qū)域產(chǎn)生相當(dāng)均勻的2特斯拉軸向磁場,直到兩端區(qū)域才降低至0.5特斯拉軸向磁場。這軸向磁場大致與徑向距離無關(guān)。這強磁場使得即使高能量粒子也能夠發(fā)生足夠明顯的偏轉(zhuǎn),從而可以確定它們的動量。這強磁場接近均勻的方向和強度使得測量結(jié)果非常精確。大約400MeV以下的粒子會強烈地偏轉(zhuǎn),它們會在磁場中反復(fù)回旋,這樣它們將不會被測量到。然而,這能量級別與質(zhì)子撞擊產(chǎn)生的幾TeV能量級別的粒子能量相比,卻非常小。
外筒層環(huán)狀磁鐵是由8個空心超導(dǎo)線圈組成,主要功能是為μ子系統(tǒng)產(chǎn)生大約0.5特斯拉環(huán)狀磁場。粒子的運動軌跡與環(huán)狀磁場之間呈大約直角關(guān)系。定義磁場的“彎曲本領(lǐng)”為;其中,是磁場垂直于粒子移動路徑的分量、是微小路徑元素、是粒子在探測區(qū)域里的路徑。那么,在探測區(qū)域里,彎曲本領(lǐng)可以保持很高數(shù)值。這對于粒子的動量測量非常重要。
兩個端帽的環(huán)狀磁鐵也是由8個的空心磁芯超導(dǎo)線圈組成,主要功能是為μ子系統(tǒng)提供最佳彎曲本領(lǐng)的磁場,滿足這前提,在這區(qū)域的環(huán)狀磁場大約為1特斯拉。彎曲本領(lǐng)大約為1-7.5Tm(特斯拉·米)。稍加比較,螺線管磁鐵可給出大約1.5-5.5Tm的彎曲本領(lǐng)。
ATLAS探測器的測量還會通過位于前方區(qū)域的一系列探測器補充。這些探測器被放置在LHC隧道中遠(yuǎn)離相互作用點的位置。測量極小角度彈性散射(elastic scattering)的基本思路是為了了解ATLAS相互作用點的絕對光度。