單偏振單模聚合物光子晶體光纖設(shè)計(jì)
格式:pdf
大?。?span id="jpz2wgu" class="single-tag-height" data-v-09d85783>540KB
頁(yè)數(shù):4P
人氣 :80
4.6
設(shè)計(jì)了一種聚甲基丙烯酸甲酯(PMMA)基的單偏振單模(SPSM)微結(jié)構(gòu)聚合物光纖(MPOF)。利用全矢量有限元法和光束傳播法相結(jié)合分析了這種光纖的偏振特性和約束損耗。通過(guò)優(yōu)化光纖結(jié)構(gòu)參數(shù),發(fā)現(xiàn)在0.51μm~0.62μm的可見(jiàn)光波長(zhǎng)范圍,由于基模兩個(gè)正交偏振模的截止波長(zhǎng)不同,這種微結(jié)構(gòu)聚合物光纖只能傳輸基模中的一個(gè)偏振模,從而實(shí)現(xiàn)單偏振單模運(yùn)轉(zhuǎn)。該11圈圓空氣孔六角排列光纖結(jié)構(gòu)的傳導(dǎo)偏振模在0.57μm波長(zhǎng)處約束損耗僅為1.13 dB/m,這種低損耗的單偏振單模微結(jié)構(gòu)聚合物光纖可有效消除傳統(tǒng)保偏光纖固有的偏振串?dāng)_和偏振模色散。
新型寬帶單偏振單模光子晶體光纖的設(shè)計(jì)
格式:pdf
大?。?span id="nzfenx2" class="single-tag-height" data-v-09d85783>568KB
頁(yè)數(shù):5P
基于折射率匹配耦合原理,提出并設(shè)計(jì)了一種新型寬帶單偏振單模光子晶體光纖,闡述了工作原理并利用全矢量有限元法對(duì)其進(jìn)行了數(shù)值模擬。當(dāng)中間纖芯和邊芯之間空氣孔1和2的直徑為2.4μm時(shí),波長(zhǎng)在1.26~1.7μm的范圍內(nèi),偏振相關(guān)損耗大于4.08db/m,單偏振單模的帶寬高達(dá)440nm;當(dāng)空氣孔1和2的直徑為2.6μm時(shí),在波長(zhǎng)1.31μm處,x偏振模的限制損耗為26.93db/m,而y偏振模的限制損耗僅為0.01db/m,在波長(zhǎng)1.55μm處,x偏振模的限制損耗為38.66db/m,y偏振模的限制損耗僅為0.05db/m。這種光子晶體光纖具有高帶寬特性,并且在1.31μm和1.55μm兩個(gè)通信窗口存在高相關(guān)偏振損耗。
大芯區(qū)的單模光子晶體光纖
格式:pdf
大?。?span id="92effis" class="single-tag-height" data-v-09d85783>277KB
頁(yè)數(shù):4P
采用毛細(xì)玻璃管拼接并拉絲的方法試制成功光子晶體光纖樣品,它由石英纖芯和周?chē)柿切畏植嫉膬扇饪捉M成,氣孔直徑4μm,間距17μm,芯區(qū)直徑30μm。理論模擬和光學(xué)實(shí)驗(yàn)均證實(shí)此光纖在6328nm以上的波長(zhǎng)范圍內(nèi)為單模光纖
摻鍺芯光子晶體光纖和普通單模光纖的低損耗熔接
格式:pdf
大小:1.0MB
頁(yè)數(shù):6P
4.4
基于全矢量有限元法,在1550nm波段對(duì)摻鍺芯光子晶體光纖(pcf)與普通單模光纖(smf)的熔接損耗進(jìn)行了理論分析,指出模場(chǎng)失配是造成兩者熔接損耗大的最主要因素;進(jìn)而提取自制的光子晶體光纖實(shí)際截面數(shù)據(jù),更準(zhǔn)確地估計(jì)出由模場(chǎng)失配引入的熔接損耗。采用電弧放電熔接技術(shù),通過(guò)反復(fù)實(shí)驗(yàn)給出了一組優(yōu)化的熔接參數(shù),并根據(jù)自制的光子晶體光纖具有摻鍺芯子而采用重焊操作使得包層孔適量縮塌,可以有效地減小兩種光纖的模場(chǎng)失配進(jìn)而降低了熔接損耗,實(shí)現(xiàn)了光子晶體光纖和普通單模光纖的低損耗熔接。
光子晶體光纖熔接損耗研究
格式:pdf
大?。?span id="2cblui2" class="single-tag-height" data-v-09d85783>511KB
頁(yè)數(shù):3P
4.7
基于有限元法分析了光子晶體光纖模場(chǎng)半徑,為了提高計(jì)算速度,提出了一種工作波長(zhǎng)為1.55μm時(shí),光子晶體光纖模場(chǎng)半徑的快速估算方法,進(jìn)而實(shí)現(xiàn)光子晶體光纖熔接損耗的快速估算。分析表明,本文提出的方法能夠準(zhǔn)確快速的實(shí)現(xiàn)光子晶體光纖熔接損耗的估算。
光子晶體光纖陀螺技術(shù)
格式:pdf
大?。?span id="7bazevi" class="single-tag-height" data-v-09d85783>805KB
頁(yè)數(shù):6P
4.6
介紹了光纖陀螺在實(shí)際應(yīng)用過(guò)程中的環(huán)境適應(yīng)性問(wèn)題,并從光子晶體光纖的結(jié)構(gòu)特點(diǎn)出發(fā),總結(jié)了光子晶體光纖的獨(dú)特應(yīng)用優(yōu)勢(shì),指出將光子晶體光纖應(yīng)用于光纖陀螺中可很好地解決溫度、磁和輻射敏感等問(wèn)題。通過(guò)實(shí)驗(yàn)研究,驗(yàn)證了實(shí)心保偏光子晶體光纖的損耗、模式特性,以及溫度、磁場(chǎng)和核輻射對(duì)此種光纖的影響。同時(shí),研究開(kāi)發(fā)了它與傳統(tǒng)保偏光纖的熔接對(duì)軸技術(shù),熔接點(diǎn)損耗和偏振串音達(dá)到0.7db和-25db。在此基礎(chǔ)上,研制出光子晶體光纖陀螺樣機(jī),陀螺零漂達(dá)到0.09(°)/h。研究和對(duì)比表明:在光纖陀螺中用光子晶體光纖代替?zhèn)鹘y(tǒng)的光纖,在減小溫度、輻射、磁場(chǎng)的影響和進(jìn)一步提高光纖陀螺性能方面具備很大的潛力。
260μm芯徑超大模場(chǎng)光子晶體光纖實(shí)現(xiàn)準(zhǔn)單模傳輸
格式:pdf
大?。?span id="hril27a" class="single-tag-height" data-v-09d85783>192KB
頁(yè)數(shù):2P
4.5
大模場(chǎng)光子晶體光纖的結(jié)構(gòu)和設(shè)計(jì)具有很高的靈活性,能夠通過(guò)調(diào)整其微結(jié)構(gòu)來(lái)獲得實(shí)現(xiàn)高能激光輸出所需的有效模面積大等優(yōu)良特性,使光纖激光器的性能顯著改善。國(guó)內(nèi)目前對(duì)于光子晶體光纖的研究主要集中在基礎(chǔ)理論和基本性能的測(cè)試上。近年來(lái),中國(guó)科學(xué)院上海光學(xué)精密機(jī)械研究所在光子晶體光纖的制備方面展開(kāi)了探索性的研究,目前摻y(tǒng)b3+石英光子晶體光纖已經(jīng)實(shí)現(xiàn)了功率達(dá)到
應(yīng)力型大模面積光子晶體光纖的纖芯設(shè)計(jì)
格式:pdf
大小:719KB
頁(yè)數(shù):4P
4.4
通過(guò)施加完美匹配層,利用有限元法,研究熱應(yīng)力誘導(dǎo)的單偏振大模面積光子晶體光纖的偏振特性,計(jì)算纖芯參數(shù)對(duì)場(chǎng)能量分布系數(shù)和偏振損耗比的影響.結(jié)果表明,隨著纖芯折射率提高,兩正交偏振模的損耗比下降,當(dāng)纖芯直徑減小時(shí),場(chǎng)能量分布系數(shù)降低.
光子晶體光纖超連續(xù)譜光源
格式:pdf
大?。?span id="xog2jez" class="single-tag-height" data-v-09d85783>700KB
頁(yè)數(shù):8P
4.7
介紹該課題組近兩年在光子晶體光纖超連續(xù)譜方面的主要研究成果,包括基于連續(xù)波泵浦研制全光纖化超連續(xù)譜源,利用級(jí)聯(lián)一段高非線(xiàn)性正常色散光纖,通過(guò)光纖的受激拉曼散射效應(yīng)實(shí)現(xiàn)超連續(xù)譜的平坦化;基于皮秒鎖模光纖激光器實(shí)現(xiàn)全光纖化5w輸出超連續(xù)譜源;拉制一段145m的錐形光子晶體光纖,利用自制的納秒光纖激光器與錐形光子晶體光纖熔接,制備輸出功率2.2w的寬帶超連續(xù)譜源;利用自制的網(wǎng)狀光子晶體光纖和全固態(tài)光子帶隙光纖,分別研究亞微米薄壁上偏振相關(guān)的超連續(xù)譜產(chǎn)生,以及基于四波混頻效應(yīng)產(chǎn)生的超連續(xù)譜.
雙層芯色散補(bǔ)償光子晶體光纖
格式:pdf
大小:304KB
頁(yè)數(shù):5P
4.4
為了抑制通信系統(tǒng)中脈沖的展寬,根據(jù)色散補(bǔ)償理論,提出了一種由單一石英材料制成的雙層芯光子晶體光纖(dccpcf).該光纖的色散值在1.55μm處可達(dá)到-6000ps/(nm·km).理論分析表明,在傳輸過(guò)程中內(nèi)芯基模和外芯缺陷模以相位匹配波長(zhǎng)為臨界狀態(tài),在內(nèi)芯與外芯之間相互交替?zhèn)鬏?并在匹配波長(zhǎng)處因模式發(fā)生強(qiáng)烈耦合而引起折射率產(chǎn)生大幅度波動(dòng).通過(guò)對(duì)結(jié)構(gòu)參數(shù)d1、d2變化的情況下色散曲線(xiàn)的擾動(dòng)情況進(jìn)行分析,可為實(shí)際制備工作提供一定的理論指導(dǎo).
光子晶體光纖及其在光纖陀螺中的應(yīng)用
格式:pdf
大?。?span id="qm37rl7" class="single-tag-height" data-v-09d85783>1.1MB
頁(yè)數(shù):6P
4.7
光子晶體光纖是一種包層由空氣孔-石英沿軸向方向周期排列所構(gòu)成的新型光纖。光子晶體光纖特殊的結(jié)構(gòu)分布和特性,使其在降低光學(xué)噪聲、陀螺尺寸、溫度敏感性,提高陀螺精度和抗核輻射等方面,具有傳統(tǒng)光纖光纖陀螺不可比擬的優(yōu)越性。本文綜述了光子晶體光纖的概念、在光纖陀螺方面的獨(dú)特優(yōu)勢(shì),以及其在光纖陀螺應(yīng)用方面的研究進(jìn)展和前景。
光子晶體光纖在量子信息上的應(yīng)用
格式:pdf
大?。?span id="pkdsjco" class="single-tag-height" data-v-09d85783>1.1MB
頁(yè)數(shù):7P
4.8
先簡(jiǎn)單介紹光子晶體光纖相對(duì)于普通光纖的特點(diǎn),然后重點(diǎn)闡述光子晶體光纖在量子信息上應(yīng)用的優(yōu)勢(shì)。與其它方法,如基于非線(xiàn)性晶體自發(fā)參量下轉(zhuǎn)換方法相比,利用光子晶體光纖能更有效地產(chǎn)生糾纏光子,并能與現(xiàn)有光纖傳輸系統(tǒng)良好兼容,從而表現(xiàn)出其在量子信息領(lǐng)域內(nèi)的優(yōu)越性及巨大的應(yīng)用潛力。最后簡(jiǎn)要展望了光子晶體光纖在量子信息領(lǐng)域內(nèi)的前景。
光子晶體光纖海外市場(chǎng)受寵
格式:pdf
大?。?span id="eyy21ea" class="single-tag-height" data-v-09d85783>1.2MB
頁(yè)數(shù):2P
4.5
光子晶體光纖(pcf),是在1987年提出的光子晶體概念基礎(chǔ)上,由1995年開(kāi)始付諸實(shí)現(xiàn)的光纖。光子晶體光纖是一種新型光纖,其結(jié)構(gòu)和導(dǎo)光機(jī)理都與普通光纖不同,呈現(xiàn)出許多在傳統(tǒng)光纖中難以實(shí)現(xiàn)的特性,并因此受到廣泛關(guān)注。在光子晶體光
多芯光子晶體光纖鎖模激光器
格式:pdf
大?。?span id="79i6vkc" class="single-tag-height" data-v-09d85783>452KB
頁(yè)數(shù):6P
4.3
實(shí)驗(yàn)研究了基于摻y(tǒng)b多芯大模場(chǎng)面積光子晶體光纖的全正色散鎖模激光器.增益光纖的18個(gè)纖芯呈六角陣列排布,等效的模場(chǎng)直徑約為52μm.激光器基于σ腔結(jié)構(gòu),腔內(nèi)沒(méi)有色散補(bǔ)償元件,通過(guò)半導(dǎo)體可飽和吸收鏡實(shí)現(xiàn)鎖模的自啟動(dòng).實(shí)驗(yàn)獲得了平均功率為3.3w,脈沖寬度為4.92ps,重復(fù)頻率為44.68mhz的鎖模脈沖輸出,對(duì)應(yīng)的單脈沖能量為74nj,脈沖經(jīng)腔外光柵對(duì)壓縮為780fs.
多芯光子晶體光纖鎖模過(guò)程的數(shù)值模擬
格式:pdf
大小:907KB
頁(yè)數(shù):7P
4.4
從線(xiàn)性耦合的非線(xiàn)性薛定諤方程組出發(fā),數(shù)值模擬了利用可飽和吸收鏡啟動(dòng)多芯光子晶體光纖激光器鎖模的建立過(guò)程.由于初始自發(fā)輻射的隨機(jī)性,可飽和吸收鏡在多個(gè)芯中提取的初始脈沖也具有很大的隨機(jī)性.針對(duì)兩種脈沖建立的可能初始情況,即只在一個(gè)纖芯中先提取出脈沖與同時(shí)在多個(gè)纖芯中提取出脈沖,對(duì)多芯光子晶體光纖作為鎖模激光器增益介質(zhì)的機(jī)理進(jìn)行了詳細(xì)的模擬.模擬結(jié)果表明,要想同時(shí)鎖定多個(gè)纖芯的所有縱模頻率,不僅需要纖芯之間具有較強(qiáng)的耦合,而且在可飽和吸收鏡提取出的多個(gè)初始脈沖時(shí)延較大時(shí),在talbot腔結(jié)構(gòu)下,端鏡反射使得各個(gè)纖芯出射光束相互交疊也是建立穩(wěn)定鎖模過(guò)程必須的.
雙芯光子晶體光纖耦合器模型優(yōu)化研究
格式:pdf
大?。?span id="prmhvpc" class="single-tag-height" data-v-09d85783>414KB
頁(yè)數(shù):5P
4.5
為了優(yōu)化雙芯光子晶體光纖耦合器的耦合性能,采用改變兩纖芯間空氣孔的結(jié)構(gòu)和孔內(nèi)折射率的方法,得到了雙芯光子晶體光纖耦合器的優(yōu)化模型?;诠馐鴤鞑シ〝?shù)值分析出兩纖芯間空氣孔尺寸以及孔內(nèi)注入材料折射率的變化對(duì)雙芯光子晶體光纖耦合器的耦合性能的影響。結(jié)果表明,由于光纖的整體結(jié)構(gòu)不變,使得光纖損耗系數(shù)保持不變;減小雙芯間的空氣孔孔徑或增大孔內(nèi)折射率都會(huì)使耦合器的耦合長(zhǎng)度減小,兩不同偏振方向的耦合長(zhǎng)度差異減小,損耗減小;雙芯間空氣孔內(nèi)折射率可調(diào)性強(qiáng),使得光纖耦合器的耦合性能有易調(diào)節(jié)的優(yōu)點(diǎn),為設(shè)計(jì)雙芯光子晶體光纖耦合器的優(yōu)化模型提供了理論支持。
混合纖芯光子晶體光纖的色散特性研究
格式:pdf
大小:820KB
頁(yè)數(shù):5P
4.7
利用有限差分法研究了一種混合纖芯光子晶體光纖的色散特性.在光纖端面的外圍區(qū)域,由空氣孔在石英材料中均布排列形成包層,在中心則由圓形高折射率材料與布居其近鄰的數(shù)個(gè)輔助小空氣孔共同構(gòu)成纖芯.輔助空氣小孔使光纖的色散陡增,比普通光纖色散參數(shù)高兩個(gè)數(shù)量級(jí)以上.詳細(xì)的數(shù)值研究表明,纖芯周?chē)囊蝗o助空氣小孔數(shù)目越多、越靠近圓形高折射率材料則色散參數(shù)就越大.當(dāng)輔助小孔距離纖芯非常近時(shí),模場(chǎng)面積大幅度增大,此時(shí)不僅能獲得超大色散,而且能夠使光子晶體光纖具有非常小的非線(xiàn)性效應(yīng).改變包層空氣孔的大小對(duì)色散參數(shù)影響不明顯.
多芯光子晶體光纖高功率超連續(xù)譜光源
格式:pdf
大?。?span id="smbuokf" class="single-tag-height" data-v-09d85783>195KB
頁(yè)數(shù):2P
4.3
分析基于單芯光子晶體光纖的超連續(xù)譜光源在提升平均輸出功率時(shí)所面臨的問(wèn)題,指出采用多芯光子晶體光纖作為超連續(xù)譜產(chǎn)生介質(zhì)是一種實(shí)現(xiàn)高功率超連續(xù)譜產(chǎn)生的潛在方案。使用自制皮秒光纖激光器泵浦一段國(guó)產(chǎn)多芯光子晶體光纖,實(shí)現(xiàn)了光譜范圍750~1700nm,平均功率42.3w的全光纖化高功率超連續(xù)譜輸出。
雙芯準(zhǔn)晶格光子晶體光纖的色散特性
格式:pdf
大小:480KB
頁(yè)數(shù):7P
4.7
雙芯準(zhǔn)晶格光子晶體光纖的色散特性 胥長(zhǎng)微 (黑龍江大學(xué)電子工程學(xué)院20115414) 摘要:設(shè)計(jì)了一種折射率引導(dǎo)型雙芯準(zhǔn)晶格光子晶體光纖。該光纖內(nèi)、外纖芯中光波的耦合 效應(yīng),可在相位匹配波長(zhǎng)附近產(chǎn)生相當(dāng)高的負(fù)色數(shù)值。通過(guò)分析內(nèi)包層孔徑、纖芯孔徑、外 包層孔徑d,孔間距a,最終設(shè)計(jì)出一種能在1550nm低損耗窗口性能優(yōu)越的色散補(bǔ)償光纖。 此種光線(xiàn)適合在長(zhǎng)距離高速光纖通信,系統(tǒng)中為常規(guī)單模光纖提供色散補(bǔ)償。 關(guān)鍵詞:光纖光學(xué);光子晶體光纖;雙芯;色散補(bǔ)償 1引言 近年來(lái),光子晶體光纖由于其獨(dú)特的特性們的廣泛關(guān)注,并成為國(guó)際學(xué)術(shù)界 研究的熱點(diǎn)領(lǐng)域.由于靈活的結(jié)構(gòu)使得它具有許多傳統(tǒng)光纖不具備的特點(diǎn),比 如高非線(xiàn)性,高雙折和偏振保持,奇異色散特性,表面增強(qiáng)拉曼效應(yīng)等.雙芯光 纖是學(xué)系統(tǒng)中常用的耦合器件,然而傳統(tǒng)雙芯光纖在制作上比繁瑣,光子晶體 光
利用自發(fā)四波混頻測(cè)量光子晶體光纖色散
格式:pdf
大?。?span id="qo16yp1" class="single-tag-height" data-v-09d85783>593KB
頁(yè)數(shù):5P
4.4
使用脈寬為1.6ps的脈沖光抽運(yùn)0.6m長(zhǎng)的光子晶體光纖,測(cè)量由光纖中自發(fā)四波混頻過(guò)程所產(chǎn)生光子對(duì)的頻譜,并利用所獲得的相位匹配數(shù)據(jù)確定了待測(cè)光纖的色散。當(dāng)抽運(yùn)光的中心波長(zhǎng)以1nm的步長(zhǎng),在1037~1047nm的范圍內(nèi)變化時(shí),通過(guò)可調(diào)諧濾波器和單光子探測(cè)器測(cè)量光子晶體光纖產(chǎn)生的信號(hào)和閑頻光子對(duì)的頻譜,從而獲得11組四波混頻相位匹配數(shù)據(jù)。然后使用階躍有效折射率模型對(duì)所獲得的相位匹配數(shù)據(jù)進(jìn)行擬合,得出待測(cè)光子晶體光纖的纖芯半徑和包層空氣比的有效值分別為0.949μm和29.52%,并在此基礎(chǔ)上計(jì)算了光纖的色散及全頻譜范圍內(nèi)的四波混頻相位匹配曲線(xiàn)。實(shí)驗(yàn)結(jié)果顯示,曲線(xiàn)預(yù)測(cè)值與實(shí)測(cè)值之間誤差小于0.1%。
一種非對(duì)稱(chēng)雙芯光子晶體光纖耦合器
格式:pdf
大?。?span id="dtyridv" class="single-tag-height" data-v-09d85783>518KB
頁(yè)數(shù):5P
4.7
通過(guò)分析非對(duì)稱(chēng)雙芯光子晶體光纖耦合理論,提出了一種非對(duì)稱(chēng)雙芯光子晶體光纖耦合器。理論分析顯示,該耦合器的耦合比在一個(gè)較寬的波長(zhǎng)范圍內(nèi)變化較小,具有波長(zhǎng)響應(yīng)平坦特性。通過(guò)有限元法模擬分析了該耦合器兩芯間空氣孔的尺寸以及光的偏振對(duì)其耦合特性的影響,結(jié)果表明,該非對(duì)稱(chēng)光子晶體光纖耦合器在1.3~1.8μm的波長(zhǎng)范圍內(nèi),其50%耦合比變化在±4%以?xún)?nèi),具有較好的波長(zhǎng)平坦耦合響應(yīng)特性,適合光纖通信等領(lǐng)域?qū)拵я詈掀鞯男枨蟆?/p>
文輯推薦
知識(shí)推薦
百科推薦
職位:幕墻材料員
擅長(zhǎng)專(zhuān)業(yè):土建 安裝 裝飾 市政 園林