基于遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的電解碲電源
格式:pdf
大?。?span id="z722fs7" class="single-tag-height" data-v-09d85783>3.2MB
頁數(shù):6P
人氣 :84
4.5
優(yōu)化電解碲電源對電解行業(yè)節(jié)能增效、提高電解產(chǎn)品質(zhì)量和改善電網(wǎng)環(huán)境具有重要意義.電源前級采用三相電壓型PWM整流器;在建立PWM整流器數(shù)學(xué)模型的基礎(chǔ)上;通過改進(jìn)雙閉環(huán)PI控制策略;即外環(huán)基于并行搜索全局尋優(yōu)的遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值的智能控制方法;分析網(wǎng)側(cè)電流波形和諧波含量;可得到所需的額定電解電壓和電流;以MATLAB/Simulink軟件為平臺進(jìn)行仿真計算.結(jié)果表明:GA-BP(Geneticalgorithm-Backpropagation)算法具有輸出電壓平穩(wěn)、響應(yīng)速度快、超調(diào)量小、抗干擾性強(qiáng)等優(yōu)點.
基于遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的GIS設(shè)備放電故障診斷
格式:pdf
大小:562KB
頁數(shù):4P
為有效gis設(shè)備放電故障診斷的快速性和準(zhǔn)確性,采用近幾年出現(xiàn)的遺傳算法對bp神經(jīng)網(wǎng)絡(luò)進(jìn)行優(yōu)化,減少了bp神經(jīng)網(wǎng)絡(luò)算法陷入局部最優(yōu)解的風(fēng)險,顯著增強(qiáng)了bp神經(jīng)網(wǎng)絡(luò)的泛化能力和全局尋優(yōu)能力。對比發(fā)現(xiàn),遺傳算法優(yōu)化后的bp神經(jīng)網(wǎng)絡(luò)模型具有比較好的快速性和準(zhǔn)確的診斷能力。測試結(jié)果表明,遺傳算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò)對gis設(shè)備放電故障診斷具有可行性和有效性。
遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)壓電陶瓷蠕變預(yù)測
格式:pdf
大?。?span id="dtreajs" class="single-tag-height" data-v-09d85783>1.3MB
頁數(shù):6P
針對壓電陶瓷驅(qū)動器的蠕變誤差隨時間呈現(xiàn)非線性變化,會嚴(yán)重影響其定位精度的問題,提出遺傳算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò)的壓電陶瓷蠕變預(yù)測算法。采用遺傳算法優(yōu)化了bp神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值,構(gòu)建了基于遺傳算法的bp神經(jīng)網(wǎng)絡(luò)(ga-bp算法)的蠕變預(yù)測模型。用ga-bp算法對壓電陶瓷蠕變進(jìn)行了預(yù)測仿真,并將結(jié)果與實測數(shù)據(jù)進(jìn)行了對比。結(jié)果表明,獲得的蠕變預(yù)測結(jié)果與實驗數(shù)據(jù)的最大絕對誤差均不超過0.2μm,最大蠕變誤差均小于1.5%,最大均方誤差僅為0.0046,因此,ga-bp預(yù)測模型可作為預(yù)測壓電陶瓷蠕變誤差的一種有效手段。
遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)壓電陶瓷蠕變預(yù)測
格式:pdf
大?。?span id="gdvafkg" class="single-tag-height" data-v-09d85783>1.9MB
頁數(shù):6P
4.7
針對壓電陶瓷驅(qū)動器的蠕變誤差隨時間呈現(xiàn)非線性變化,會嚴(yán)重影響其定位精度的問題,提出遺傳算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò)的壓電陶瓷蠕變預(yù)測算法.采用遺傳算法優(yōu)化了bp神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值,構(gòu)建了基于遺傳算法的bp神經(jīng)網(wǎng)絡(luò)(ga-bp算法)的蠕變預(yù)測模型.用ga-bp算法對壓電陶瓷蠕變進(jìn)行了預(yù)測仿真,并將結(jié)果與實測數(shù)據(jù)進(jìn)行了對比.結(jié)果表明,獲得的蠕變預(yù)測結(jié)果與實驗數(shù)據(jù)的最大絕對誤差均不超過0.2μm,最大蠕變誤差均小于1.5%,最大均方誤差僅為0.0046,因此,ga-bp預(yù)測模型可作為預(yù)測壓電陶瓷蠕變誤差的一種有效手段.
基于神經(jīng)網(wǎng)絡(luò)的中央空調(diào)遺傳算法優(yōu)化研究
格式:pdf
大?。?span id="m24sxrn" class="single-tag-height" data-v-09d85783>836KB
頁數(shù):4P
4.5
根據(jù)某建筑中央空調(diào)系統(tǒng)的工作參數(shù),創(chuàng)建bp神經(jīng)網(wǎng)絡(luò)模型,得到輸入輸出的映射關(guān)系.利用遺傳算法尋找中央空調(diào)系統(tǒng)的最佳工作參數(shù),對遺傳算法的優(yōu)化結(jié)果進(jìn)行分析.利用圖形分析法驗證遺傳算法得到的結(jié)果是全局最優(yōu)解.當(dāng)冷卻水進(jìn)口溫度為室外溫度、冷水出口溫度為設(shè)置范圍內(nèi)的最大值時,空調(diào)功耗最小.
神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法在建筑優(yōu)化設(shè)計中的應(yīng)用
格式:pdf
大?。?span id="fjdea77" class="single-tag-height" data-v-09d85783>318KB
頁數(shù):6P
4.3
采用遺傳算法對建筑設(shè)計進(jìn)行優(yōu)化,是建筑設(shè)計領(lǐng)域一個全新的研究方向,然而,在日照分析下基于遺傳算法求解最優(yōu)值時,需要對每個進(jìn)化個體進(jìn)行適應(yīng)度函數(shù)的計算,將消耗大量的運(yùn)行時間.為了降低算法的復(fù)雜性,提出一種神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法的建筑優(yōu)化設(shè)計方法.研究結(jié)果表明:與傳統(tǒng)遺傳算法對比,該方法可以有效降低算法的迭代次數(shù)和運(yùn)行時間,提高建筑優(yōu)化設(shè)計的效率.
基于神經(jīng)網(wǎng)絡(luò)與遺傳算法節(jié)能擾流子優(yōu)化設(shè)計
格式:pdf
大?。?span id="ydbxrwd" class="single-tag-height" data-v-09d85783>355KB
頁數(shù):6P
4.3
在彎管前安裝擾流子,可以減小彎管處二次流強(qiáng)度,降低能量損失,并運(yùn)用cfd軟件對不同參數(shù)下的擾流子節(jié)能效果數(shù)值計算。以l9(33)正交試驗以及4組補(bǔ)充試驗作為bp神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本,建立在5種雷諾數(shù)下擾流子節(jié)能效率與擾流子葉片轉(zhuǎn)角、葉片長度、安裝距離3個結(jié)構(gòu)參數(shù)的非線性映射關(guān)系;擾流子節(jié)能效率最大值作為目標(biāo)函數(shù),再結(jié)合遺傳算法進(jìn)行結(jié)構(gòu)參數(shù)優(yōu)化。最終得到在不同雷諾數(shù)下擾流子葉片轉(zhuǎn)角、葉片長度、安裝距離的最佳組合形式,并利用有限元方法對結(jié)果驗證。結(jié)果表明,這種優(yōu)化方案具有可行性;合適的結(jié)構(gòu)參數(shù)的擾流子具有良好的節(jié)能效果。
基于神經(jīng)網(wǎng)絡(luò)與遺傳算法節(jié)能擾流子優(yōu)化設(shè)計
格式:pdf
大?。?span id="7armr3y" class="single-tag-height" data-v-09d85783>2.4MB
頁數(shù):6P
4.6
在彎管前安裝擾流子,可以減小彎管處二次流強(qiáng)度,降低能量損失,并運(yùn)用cfd軟件對不同參數(shù)下的擾流子節(jié)能效果數(shù)值計算.以l9(33)正交試驗以及4組補(bǔ)充試驗作為bp神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本,建立在5種雷諾數(shù)下擾流子節(jié)能效率與擾流子葉片轉(zhuǎn)角、葉片長度、安裝距離3個結(jié)構(gòu)參數(shù)的非線性映射關(guān)系;擾流子節(jié)能效率最大值作為目標(biāo)函數(shù),再結(jié)合遺傳算法進(jìn)行結(jié)構(gòu)參數(shù)優(yōu)化.最終得到在不同雷諾數(shù)下擾流子葉片轉(zhuǎn)角、葉片長度、安裝距離的最佳組合形式,并利用有限元方法對結(jié)果驗證.結(jié)果表明,這種優(yōu)化方案具有可行性;合適的結(jié)構(gòu)參數(shù)的擾流子具有良好的節(jié)能效果.
神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法在建筑優(yōu)化設(shè)計中的應(yīng)用
格式:pdf
大小:194KB
頁數(shù):6P
4.5
采用遺傳算法對建筑設(shè)計進(jìn)行優(yōu)化,是建筑設(shè)計領(lǐng)域一個全新的研究方向,然而,在日照分析下基于遺傳算法求解最優(yōu)值時,需要對每個進(jìn)化個體進(jìn)行適應(yīng)度函數(shù)的計算,將消耗大量的運(yùn)行時間.為了降低算法的復(fù)雜性,提出一種神經(jīng)網(wǎng)絡(luò)結(jié)合遺傳算法的建筑優(yōu)化設(shè)計方法.研究結(jié)果表明:與傳統(tǒng)遺傳算法對比,該方法可以有效降低算法的迭代次數(shù)和運(yùn)行時間,提高建筑優(yōu)化設(shè)計的效率.
基于遺傳克隆選擇算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的地理信息預(yù)測研究
格式:pdf
大?。?span id="s8572rp" class="single-tag-height" data-v-09d85783>486KB
頁數(shù):4P
4.7
針對bp神經(jīng)網(wǎng)絡(luò)訓(xùn)練過程中的訓(xùn)練時間較長、完全不能訓(xùn)練或容易陷入局部極小值等問題,提出基于遺傳克隆選擇算法(cloga)優(yōu)化bp神經(jīng)網(wǎng)絡(luò)的流程,克服bp算法的一些缺陷。并通過湖北省人口預(yù)測問題進(jìn)行效果檢驗,得到滿意的結(jié)果。
基于遺傳算法和BP神經(jīng)網(wǎng)絡(luò)的花盤結(jié)構(gòu)優(yōu)化設(shè)計
格式:pdf
大?。?span id="r20oejs" class="single-tag-height" data-v-09d85783>303KB
頁數(shù):3P
4.7
綜合利用有限元法、正交試驗法、bp神經(jīng)網(wǎng)絡(luò)以及遺傳算法對大重型數(shù)控轉(zhuǎn)臺的花盤結(jié)構(gòu)系統(tǒng)進(jìn)行優(yōu)化研究。首先對花盤結(jié)構(gòu)系統(tǒng)進(jìn)行諧響應(yīng)動力學(xué)分析,找出對結(jié)構(gòu)動態(tài)特性影響最大的模態(tài)頻率,并確定bp神經(jīng)網(wǎng)絡(luò)的輸入變量,然后利用正交試驗法和有限元分析法確定出bp神經(jīng)網(wǎng)絡(luò)樣本點數(shù)據(jù),建立反映花盤結(jié)構(gòu)特性的bp神經(jīng)網(wǎng)絡(luò)模型,最后利用遺傳算法對建立的bp神經(jīng)網(wǎng)絡(luò)優(yōu)化。仿真結(jié)果表明,花盤第一階固有頻率提高15.5%,其自重降低9.8%。
基于遺傳算法和BP神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷預(yù)測
格式:pdf
大?。?span id="2ivchzi" class="single-tag-height" data-v-09d85783>586KB
頁數(shù):4P
4.7
根據(jù)電力負(fù)荷的主要影響因素,考慮時間和天氣,建立了基于遺傳算法和反向傳播神經(jīng)網(wǎng)絡(luò)(bp)的短期負(fù)荷預(yù)測.從bp神經(jīng)網(wǎng)絡(luò)的理論入手,采用遺傳算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和隱層節(jié)點數(shù),從而避免了神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定和初始權(quán)值選擇的盲目性,提高了神經(jīng)網(wǎng)絡(luò)用于電力系統(tǒng)短期負(fù)荷預(yù)測的效率和精度使得負(fù)荷預(yù)測在更加合理的網(wǎng)絡(luò)結(jié)構(gòu)上進(jìn)行.
用神經(jīng)網(wǎng)絡(luò)和遺傳算法優(yōu)化電鍍鋅鎳磷工藝參數(shù)
格式:pdf
大?。?span id="n25tr2n" class="single-tag-height" data-v-09d85783>1.1MB
頁數(shù):4P
4.7
提出了一種神經(jīng)網(wǎng)絡(luò)與遺傳算法相結(jié)合的電鍍鋅鎳磷合金工藝參數(shù)優(yōu)化方法。以試驗數(shù)據(jù)為樣本,通過神經(jīng)網(wǎng)絡(luò)建立電鍍工藝參數(shù)與電鍍性能關(guān)系之間的復(fù)雜模型,利用遺傳算法對電鍍工藝參數(shù)進(jìn)行優(yōu)化,可充分發(fā)揮神經(jīng)網(wǎng)絡(luò)的非線性映射能力和遺傳算法的全局尋優(yōu)能力。試驗顯示了方法的有效性和優(yōu)越性。
基于神經(jīng)網(wǎng)絡(luò)和遺傳算法的溫差發(fā)電器優(yōu)化設(shè)計
格式:pdf
大?。?span id="x24iga7" class="single-tag-height" data-v-09d85783>1.1MB
頁數(shù):6P
4.7
提出了將溫差發(fā)電器對內(nèi)燃機(jī)排氣背壓的影響納入溫差發(fā)電器的優(yōu)化設(shè)計過程的觀點,設(shè)計了一套新的溫差發(fā)電器優(yōu)化方案。以發(fā)電器尺寸參數(shù)為設(shè)計變量,以排氣背壓、質(zhì)量作為約束條件,以發(fā)電片溫差為目標(biāo)進(jìn)行優(yōu)化設(shè)計。利用中心復(fù)合設(shè)計法選取試驗點,對試驗點進(jìn)行cfd仿真,采用高預(yù)測精度的改進(jìn)bp神經(jīng)網(wǎng)絡(luò)擬合設(shè)計變量與目標(biāo)函數(shù)間的關(guān)系,再利用遺傳優(yōu)化算法在設(shè)計空間尋找最佳設(shè)計點。優(yōu)化后消除了發(fā)電器對排氣背壓的影響,溫差提高了8.8%,質(zhì)量降低了6.7%。
基于遺傳算法的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)模型在水質(zhì)評價中的應(yīng)用
格式:pdf
大?。?span id="8oipuoi" class="single-tag-height" data-v-09d85783>396KB
頁數(shù):1P
4.6
基于遺傳算法的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)模型在水質(zhì)評價中的應(yīng)用
基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)在水利定額編制中的應(yīng)用
格式:pdf
大小:283KB
頁數(shù):4P
4.8
針對bp神經(jīng)網(wǎng)絡(luò)易陷入局部最優(yōu)和遺傳算法全局搜索速度過慢的缺點及水利定額編制中存在非線性和復(fù)雜性的實際狀況,提出采用遺傳算法(ga)優(yōu)化bp神經(jīng)網(wǎng)絡(luò)在水利定額編制中的問題。實例分析表明,優(yōu)化后模型(ga-bp神經(jīng)網(wǎng)絡(luò))結(jié)合了bp神經(jīng)網(wǎng)絡(luò)的非線性逼近、局部尋優(yōu)能力和遺傳算法的全局搜索特性,在穩(wěn)定性、預(yù)測精度、收斂速度上均優(yōu)于bp神經(jīng)網(wǎng)絡(luò),可運(yùn)用于水利定額編制。
基于BP神經(jīng)網(wǎng)絡(luò)和遺傳算法的年負(fù)荷預(yù)測與分析
格式:pdf
大小:527KB
頁數(shù):3P
4.5
建立bp(backpropagation)神經(jīng)網(wǎng)絡(luò)與遺傳算法相結(jié)合的電力負(fù)荷預(yù)測模型。在該模型中,利用遺傳算法具有的全局尋優(yōu)特點,將bp網(wǎng)絡(luò)的初始權(quán)值優(yōu)化到一個較小的范圍,然后再用bp算法在該范圍內(nèi)繼續(xù)優(yōu)化,以便使優(yōu)化算法既能實現(xiàn)全局最優(yōu)求解,又能獲得較快的求解速度。最后,通過仿真算例,與傳統(tǒng)bp網(wǎng)絡(luò)優(yōu)化結(jié)果、及各種擬合方法獲得結(jié)果進(jìn)行比對,驗證了計算方法的可行性和優(yōu)越性。
基于BP神經(jīng)網(wǎng)絡(luò)和遺傳算法的企業(yè)信息化評價研究
格式:pdf
大小:306KB
頁數(shù):4P
4.4
闡述了企業(yè)信息化水平評價問題的現(xiàn)狀,提出了運(yùn)用遺傳算法(ga)優(yōu)化bp神經(jīng)網(wǎng)絡(luò)的評價方法,避免了傳統(tǒng)評價方法確定權(quán)重值的主觀隨意性,并且克服了bp網(wǎng)絡(luò)中的局部極小缺陷,使訓(xùn)練速度加快,在建立bp-ga網(wǎng)絡(luò)信息化評價模型的基礎(chǔ)上,利用樣本公司實際指標(biāo)數(shù)據(jù)對模型的評價效果進(jìn)行了檢驗,并與傳統(tǒng)bp網(wǎng)絡(luò)模型的評價結(jié)果進(jìn)行了比較研究。
基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)模型在樁孔質(zhì)量檢測中的應(yīng)用
格式:pdf
大小:1.7MB
頁數(shù):8P
4.8
目的將改進(jìn)的神經(jīng)網(wǎng)絡(luò)模型應(yīng)用于鉆孔灌注樁樁孔質(zhì)量的智能化識別,從而減少人為的誤判、漏判情況.方法將遺傳算法與神經(jīng)網(wǎng)絡(luò)模型有機(jī)地結(jié)合起來,建立樁孔質(zhì)量檢測的智能化模型,先利用遺傳算法對神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值進(jìn)行優(yōu)化,再結(jié)合訓(xùn)練完成的神經(jīng)網(wǎng)絡(luò)模型對樁孔質(zhì)量進(jìn)行預(yù)測,同時根據(jù)現(xiàn)場數(shù)據(jù)建立三維分析圖,通過預(yù)測結(jié)果與三維分析圖的比對來驗證模型的準(zhǔn)確性.結(jié)果測試樣本的仿真誤差為0.00575,訓(xùn)練樣本的仿真誤差為0.0224;5、6號樁孔的預(yù)測結(jié)果為(0.0012,0.9999),(0.0027,0.0051),即5號樁質(zhì)量為合格,6號樁質(zhì)量為良好.結(jié)論通過預(yù)測結(jié)果與三維分析圖的比對結(jié)果,可以得出基于遺傳算法的神經(jīng)網(wǎng)絡(luò)模型能夠較好地對孔灌注樁進(jìn)行智能判別.
基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)模型在樁孔質(zhì)量檢測中的應(yīng)用
格式:pdf
大小:596KB
頁數(shù):8P
4.4
目的將改進(jìn)的神經(jīng)網(wǎng)絡(luò)模型應(yīng)用于鉆孔灌注樁樁孔質(zhì)量的智能化識別,從而減少人為的誤判、漏判情況.方法將遺傳算法與神經(jīng)網(wǎng)絡(luò)模型有機(jī)地結(jié)合起來,建立樁孔質(zhì)量檢測的智能化模型,先利用遺傳算法對神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值進(jìn)行優(yōu)化,再結(jié)合訓(xùn)練完成的神經(jīng)網(wǎng)絡(luò)模型對樁孔質(zhì)量進(jìn)行預(yù)測,同時根據(jù)現(xiàn)場數(shù)據(jù)建立三維分析圖,通過預(yù)測結(jié)果與三維分析圖的比對來驗證模型的準(zhǔn)確性.結(jié)果測試樣本的仿真誤差為0.00575,訓(xùn)練樣本的仿真誤差為0.0224;5、6號樁孔的預(yù)測結(jié)果為(0.0012,0.9999),(0.0027,0.0051),即5號樁質(zhì)量為合格,6號樁質(zhì)量為良好.結(jié)論通過預(yù)測結(jié)果與三維分析圖的比對結(jié)果,可以得出基于遺傳算法的神經(jīng)網(wǎng)絡(luò)模型能夠較好地對孔灌注樁進(jìn)行智能判別.
遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的信號檢測
格式:pdf
大小:173KB
頁數(shù):未知
4.4
針對傳統(tǒng)方法單獨(dú)采用bp神經(jīng)網(wǎng)絡(luò)算法易陷入局部極值的問題,提出了遺傳算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò),并將其應(yīng)用于mimo-ofdm系統(tǒng)信號檢測中。該方法將遺傳算法與神經(jīng)網(wǎng)絡(luò)相結(jié)合,用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)初始值,使bp網(wǎng)絡(luò)快速收斂到最優(yōu)解,避免了由初始值的隨機(jī)選取而帶來的檢測誤碼。仿真結(jié)果表明所提出的方法在誤碼率方面有比較好的性能。
基于BP神經(jīng)網(wǎng)絡(luò)和遺傳算法的年負(fù)荷預(yù)測與分析
格式:pdf
大?。?span id="bjkcjmk" class="single-tag-height" data-v-09d85783>199KB
頁數(shù):未知
4.6
建立bp(backpropagation)神經(jīng)網(wǎng)絡(luò)與遺傳算法相結(jié)合的電力負(fù)荷預(yù)測模型。在該模型中,利用遺傳算法具有的全局尋優(yōu)特點,將bp網(wǎng)絡(luò)的初始權(quán)值優(yōu)化到一個較小的范圍,然后再用bp算法在該范圍內(nèi)繼續(xù)優(yōu)化,以便使優(yōu)化算法既能實現(xiàn)全局最優(yōu)求解,又能獲得較快的求解速度。最后,通過仿真算例,與傳統(tǒng)bp網(wǎng)絡(luò)優(yōu)化結(jié)果、及各種擬合方法獲得結(jié)果進(jìn)行比對,驗證了計算方法的可行性和優(yōu)越性。
基于Bagging算法和遺傳BP神經(jīng)網(wǎng)絡(luò)的負(fù)荷預(yù)測
格式:pdf
大?。?span id="pbcirph" class="single-tag-height" data-v-09d85783>277KB
頁數(shù):4P
4.4
負(fù)荷預(yù)測是電力規(guī)劃的基礎(chǔ),傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)預(yù)測方法存在對初始網(wǎng)絡(luò)權(quán)值設(shè)置敏感、收斂的速度慢、容易陷入局部極小值等缺點。文中引入遺傳算法先對神經(jīng)網(wǎng)絡(luò)的初始值進(jìn)行優(yōu)化,再通過神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)和訓(xùn)練,得出的結(jié)果再經(jīng)bagging方法集成,目的是提高其準(zhǔn)確率。通過matlab仿真進(jìn)行實驗,結(jié)果表明,基于bagging算法集成遺傳神經(jīng)網(wǎng)絡(luò),能夠克服傳統(tǒng)bp神經(jīng)網(wǎng)絡(luò)的缺點,可較快收斂又不易陷入到局部極值中,具有較強(qiáng)的泛化能力,同時也大大提高了網(wǎng)絡(luò)的預(yù)測精度。
改進(jìn)BP神經(jīng)網(wǎng)絡(luò)算法在基坑沉降預(yù)測中的應(yīng)用
格式:pdf
大?。?span id="wzxpndx" class="single-tag-height" data-v-09d85783>292KB
頁數(shù):2P
4.5
提出一種采用bp神經(jīng)網(wǎng)絡(luò)算法來預(yù)測深基坑沉降的方法,結(jié)合具體工程實例,構(gòu)建了預(yù)測深基坑周邊地表沉降具體bp神經(jīng)網(wǎng)絡(luò)模型,預(yù)測結(jié)果表明,該模型有較高的預(yù)測精度,可作為預(yù)測沉降的一種新方法。
改進(jìn)差分進(jìn)化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)用于入侵檢測
格式:pdf
大?。?span id="82biphi" class="single-tag-height" data-v-09d85783>744KB
頁數(shù):8P
4.5
為解決bp神經(jīng)網(wǎng)絡(luò)應(yīng)用于入侵檢測時檢測率較低、訓(xùn)練時間過長的問題,對改進(jìn)差分進(jìn)化算法(samde)優(yōu)化bp神經(jīng)網(wǎng)絡(luò)并用于入侵檢測的可行性進(jìn)行研究。該算法引入模擬退火算法(sa)和一種融合de/rand/1與de/best/1的變異算子對差分進(jìn)化算法進(jìn)行改進(jìn)以提高其全局尋優(yōu)能力。用改進(jìn)后的算法優(yōu)化bp神經(jīng)網(wǎng)絡(luò)權(quán)值閾值。通過逐次的迭代訓(xùn)練使bp神經(jīng)網(wǎng)絡(luò)收斂,將優(yōu)化過的bp神經(jīng)網(wǎng)絡(luò)用于入侵檢測。仿真實驗結(jié)果顯示,優(yōu)化的bp網(wǎng)絡(luò)在收斂速度和精度方面有明顯提升,用于入侵檢測時提高了檢測準(zhǔn)確率,縮短了訓(xùn)練時間。
文輯推薦
知識推薦
百科推薦
職位:安全評價師助理
擅長專業(yè):土建 安裝 裝飾 市政 園林