按現(xiàn)代電力電子的應(yīng)用領(lǐng)域,我們把電源模塊劃分如下:
高速發(fā)展的計(jì)算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會(huì),同時(shí)也促進(jìn)了電源模塊技術(shù)的迅速發(fā)展。八十年代,計(jì)算機(jī)全面采用了開(kāi)關(guān)電源,率先完成計(jì)算機(jī)電源換代。接著開(kāi)關(guān)電源技術(shù)相繼進(jìn)入了電子、電器設(shè)備領(lǐng)域。
計(jì)算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源模塊。綠色電腦泛指對(duì)環(huán)境無(wú)害的個(gè)人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國(guó)環(huán)境保護(hù)署l992年6月17日"能源之星"計(jì)劃規(guī)定,桌上型個(gè)人電腦或相關(guān)的外圍設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目 前效率為75%的200瓦開(kāi)關(guān)電源而言,電源自身要消耗50瓦的能源。
通信業(yè)的迅速發(fā)展極大的推動(dòng)了通信電源的發(fā)展。高頻小型化的開(kāi)關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。當(dāng)前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開(kāi)關(guān)電源取代,高頻開(kāi)關(guān)電源(也稱為開(kāi)關(guān)型整流器SMR)通過(guò)MOSFET或IGBT的高頻工作,開(kāi)關(guān)頻率一般控制在50-100kHz范圍內(nèi),實(shí)現(xiàn)高效率和小型化。近幾年,開(kāi)關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對(duì)二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
DC/DC變換器將一個(gè)固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無(wú)軌電車、地鐵列車、電動(dòng)車的無(wú)級(jí)變速和控制,同時(shí)使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時(shí)收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開(kāi)關(guān)電源), 同時(shí)還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開(kāi)關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實(shí)現(xiàn)小型化,因此就要不斷提高開(kāi)關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),當(dāng)前已有一些公司研制生產(chǎn)了采用零電流開(kāi)關(guān)和零電壓開(kāi)關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
不間斷電源(UPS)是計(jì)算機(jī)、通信系統(tǒng)以及要求提供不能中斷場(chǎng)合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開(kāi)關(guān)送到負(fù)載。為了在逆變器故障時(shí)仍能向負(fù)載提供能量,另一路備用電源通過(guò)電源轉(zhuǎn)換開(kāi)關(guān)來(lái)實(shí)現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實(shí)現(xiàn)對(duì)UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動(dòng)系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過(guò)整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動(dòng)交流異步電動(dòng)機(jī)實(shí)現(xiàn)無(wú)級(jí)調(diào)速。
國(guó)際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問(wèn)世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點(diǎn)。國(guó)內(nèi)于90年代初期開(kāi)始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開(kāi)發(fā)生產(chǎn)熱點(diǎn)。預(yù)計(jì)到2000年左右將形成高潮。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合, 整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開(kāi)路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問(wèn)題成為最關(guān)鍵的問(wèn)題,也是用戶最關(guān)心的問(wèn)題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過(guò)對(duì)多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對(duì)系統(tǒng)做出調(diào)整和處理,解決了當(dāng)前大功率IGBT逆變電源可靠性。
國(guó)外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
大功率開(kāi)關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開(kāi)始,日本的一些公司開(kāi)始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開(kāi)關(guān)電源技術(shù)迅速發(fā)展。德國(guó)西門子公司采用功率晶體管做主開(kāi)關(guān)元件,將電源的開(kāi)關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國(guó)內(nèi)對(duì)靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開(kāi)關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
傳統(tǒng)的交流-直流(AC-DC)變換器在投運(yùn)時(shí),將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時(shí)還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時(shí),網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動(dòng)態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開(kāi)關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開(kāi)關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流; (2)電流環(huán)基準(zhǔn)信號(hào)為電壓環(huán)誤差信號(hào)與全波整流電壓取樣信號(hào)之乘積。
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對(duì)分布式高頻開(kāi)關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動(dòng)了分布式高頻開(kāi)關(guān)電源系統(tǒng)研究的展開(kāi)。自八十年代后期開(kāi)始,這一方向已成為國(guó)際電力電子學(xué)界的研究熱點(diǎn),論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點(diǎn)。已被大型計(jì)算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場(chǎng)合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動(dòng)機(jī)驅(qū)動(dòng)電源等領(lǐng)域也有廣闊的應(yīng)用前景。
功率 P=UI,是輸出電壓和輸出電流的乘積。
輸入電壓分交流輸入和直流輸入2種。
輸出電壓一般是直流輸出,但也有交流輸出的。
工作溫度
隔離電壓:隔離就是將輸出與輸入進(jìn)行電路上的分離。有以下幾個(gè)作用:
一,電流變換;
二,為了防止輸入輸出相互干擾;
三,輸入輸出電路的信號(hào)特性相差太大,比如用弱信號(hào)控制強(qiáng)電的設(shè)備
封裝尺寸有插針,貼片的,和螺旋。
輸出有單路輸出,雙路輸出及多路輸出。電源模塊是可以直接貼裝在印刷電路板上的電源供應(yīng)器,其特點(diǎn)是可為專用集成電路(ASIC)、數(shù)字信號(hào)處理器(DSP)、微處理器、存儲(chǔ)器、現(xiàn)場(chǎng)可編程門陣列 (FPGA) 及其他數(shù)字或模擬負(fù)載提供供電。一般來(lái)說(shuō),這類模塊稱為負(fù)載點(diǎn)(POL) 電源供應(yīng)系統(tǒng)或使用點(diǎn)電源供應(yīng)系統(tǒng)(PUPS)。由于模塊式結(jié)構(gòu)的優(yōu)點(diǎn)甚多, 因此模塊電源廣泛用于交換設(shè)備、接入設(shè)備、移動(dòng)通訊、 微波通訊以及光傳輸、路由器等通信領(lǐng)域和汽車電子、航空航天等。
開(kāi)關(guān)電源在設(shè)計(jì)中必須具有過(guò)流、過(guò)熱、短路等保護(hù)功能,故在設(shè)計(jì)時(shí)應(yīng)首選保護(hù)功能齊備的開(kāi)關(guān)電源模塊,并且其保護(hù)電路的技術(shù)參數(shù)應(yīng)與用電設(shè)備的工作特性相匹配,以避免損壞用電設(shè)備或開(kāi)關(guān)電源。
簡(jiǎn)單給你舉例吧,通信的光端機(jī),電力各種繼電保護(hù)裝置,鐵路的列調(diào),工控各種儀表,三航不太了解,雷達(dá)算是一種,安防監(jiān)控設(shè)備,具體的你可以看看杭州大華的產(chǎn)品,醫(yī)療心電監(jiān)護(hù)儀,很多設(shè)備都會(huì)使用!這行這幾年不好...
套用 電氣定額 智能化一章中 模塊安裝 的 定額子目 。
AC-DC和DC-DC在電源輸入的瞬間會(huì)有短時(shí)的大電流輸入,如AC-DC,在輸入電源的瞬間會(huì)出現(xiàn)一短暫(1/2~1個(gè)電源周期,如50Hz電源1/100~1/50秒)的大電流,此電流值根據(jù)產(chǎn)品不同而不同...
因開(kāi)關(guān)電源工作效率高,一般可達(dá)到80%以上,故在其輸出電流的選擇上,應(yīng)準(zhǔn)確測(cè)量或計(jì)算用電設(shè)備的最大吸收電流,以使被選用的開(kāi)關(guān)電源具有高的性能價(jià)格比,通常輸出計(jì)算公式為:
Is=KIf
式中:Is-開(kāi)關(guān)電源的額定輸出電流;
If-用電設(shè)備的最大吸收電流;
K-裕量系數(shù),一般取1.5~1.8;
AC/DC變換是將交流變換為直流,其功率流向可以是雙向的,功率流由電源流向負(fù)載的稱為"整流",功率流由負(fù)載返回電源的稱為"有源逆變"。AC/DC變換器輸入為50/60Hz的交流電,因必須經(jīng)整流、濾波,因此體積相對(duì)較大的濾波電容器是必不可少的,同時(shí)因遇到安全標(biāo)準(zhǔn)(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流輸入側(cè)必須加EMC濾波及使用符合安全標(biāo)準(zhǔn)的元件,這樣就限制AC/DC電源體積的小型化,另外,由于內(nèi)部的高頻、高壓、大電流開(kāi)關(guān)動(dòng)作,使得解決EMC電磁兼容問(wèn)題難度加大,也就對(duì)內(nèi)部高密度安裝電路設(shè)計(jì)提出了很高的要求,由于同樣的原因,高電壓、大電流開(kāi)關(guān)使得電源工作損耗增大,限制了AC/DC變換器模塊化的進(jìn)程,因此必須采用電源系統(tǒng)優(yōu)化設(shè)計(jì)方法才能使其工作效率達(dá)到一定的滿意程度。
AC/DC變換按電路的接線方式可分為,半波電路、全波電路。按電源相數(shù)可分為,單相、三相、多相。按電路工作象限又可分為一象限、二象限、三象限、四象限。
開(kāi)關(guān)電源的選用
開(kāi)關(guān)電源在輸入抗干擾性能上,由于其自身電路結(jié)構(gòu)的特點(diǎn)(多級(jí)串聯(lián)),一般的輸入干擾如浪涌電壓很難通過(guò),在輸出電壓穩(wěn)定度這一技術(shù)指標(biāo)上與線性電源相比具有較大的優(yōu)勢(shì),其輸出電壓穩(wěn)定度可達(dá)(0.5~1)%。開(kāi)關(guān)電源模塊作為一種電力電子集成器件,在選用中應(yīng)注意以下幾點(diǎn):
DC/DC變換是將可變的直流電壓變換成固定的直流電壓,也稱為直流斬波。斬波器的工作方式有兩種,一是脈寬調(diào)制方式Ts不變,改變ton(通用),二是頻率調(diào)制(
(1)Buck電路--降壓斬波器,其輸出平均電壓U0小于輸入電壓Ui,極性相同。
(2)Boost電路--升壓斬波器,其輸出平均電壓U0大于輸入電壓Ui,極性相同。
(3)Buck-Boost電路--降壓或升壓斬波器,其輸出平均電壓U0大于或小于輸入電壓Ui,極性相反,電感傳輸。
(4)Cuk電路--降壓或升壓斬波器,其輸出平均電壓U0大于或小于輸入電壓Ui,極性相反,電容傳輸。還有Sepic、Zeta電路。
上述為非隔離型DC-DC變換器電路,隔離型DC-DC變換器有正激電路、反激電路、半橋電路、全橋電路、推挽電路。
當(dāng)今軟開(kāi)關(guān)技術(shù)使得DC/DC發(fā)生了質(zhì)的飛躍,美國(guó)VICOR公司設(shè)計(jì)制造的多種ECI軟開(kāi)關(guān)DC/DC變換器,其最大輸出功率有300W、600W、800W等,相應(yīng)的功率密度為(6.2、10、17)W/cm3,效率為(80~90)%。日本TDK-Lambda公司最新推出的一種采用軟開(kāi)關(guān)技術(shù)的高頻開(kāi)關(guān)電源模塊RM系列,其開(kāi)關(guān)頻率為(200~300)kHz,功率密度已達(dá)到27W/cm3,采用同步整流器(MOSFET代替肖特基二極管),使整個(gè)電路效率提高到90%。
一般來(lái)說(shuō),這類模塊稱為負(fù)載點(diǎn) (POL) 電源供應(yīng)系統(tǒng)或使用點(diǎn)電源供應(yīng)系統(tǒng) (PUPS)。由于模塊式結(jié)構(gòu)的優(yōu)點(diǎn)甚多,因此模塊電源廣泛用于交換設(shè)備、接入設(shè)備、移動(dòng)通訊、微波通訊以及光傳輸、路由器等通信領(lǐng)域和汽車電子、航空航天等。
尤其近幾年由于數(shù)據(jù)業(yè)務(wù)的飛速發(fā)展和分布式供電系統(tǒng)的不斷推廣,模塊電源的增幅已經(jīng)超出了一次電源。模塊電源具有隔離作用,抗干擾能力強(qiáng),自帶保護(hù)功能,便于集成。隨著半導(dǎo)體工藝、封裝技術(shù)和高頻軟開(kāi)關(guān)的大量使用,模塊電源功率密度越來(lái)越大,轉(zhuǎn)換效率越來(lái)越高,應(yīng)用也越來(lái)越簡(jiǎn)單。
人們?cè)陂_(kāi)關(guān)電源技術(shù)領(lǐng)域是邊開(kāi)發(fā)相關(guān)的電力電子器件,邊開(kāi)發(fā)開(kāi)關(guān)變頻技術(shù),兩者相互促進(jìn)推動(dòng)著開(kāi)關(guān)電源每年以超過(guò)兩位數(shù)字的增長(zhǎng)率向著輕、小、薄、低噪聲、高可靠、抗干擾的方向發(fā)展。開(kāi)關(guān)電源可分為AC/DC和DC/DC兩大類,DC/DC變換器現(xiàn)已實(shí)現(xiàn)模塊化,且設(shè)計(jì)技術(shù)及生產(chǎn)工藝在國(guó)內(nèi)外均已成熟和標(biāo)準(zhǔn)化,并已得到用戶的認(rèn)可,但AC/DC的模塊化,因其自身的特性使得在模塊化的進(jìn)程中,遇到較為復(fù)雜的技術(shù)和工藝制造問(wèn)題。以下分別對(duì)兩類開(kāi)關(guān)電源的結(jié)構(gòu)和特性作以闡述
電源模塊設(shè)計(jì)方法
電源的電磁干擾水平是設(shè)計(jì)中最難的部分,設(shè)計(jì)人員能做的最多就是在設(shè)計(jì)中進(jìn)行充分考慮,尤其在布局時(shí)。由于直流到直流的轉(zhuǎn)換器很常用,所以硬件工程師或多或少都會(huì)接觸到相關(guān)的工作,本文中我們將考慮與低電磁干擾設(shè)計(jì)相關(guān)的兩種常見(jiàn)的折中方案 。
電源設(shè)計(jì)中即使是普通的直流到直流開(kāi)關(guān)轉(zhuǎn)換器的設(shè)計(jì)都會(huì)出現(xiàn)一系列問(wèn)題,尤其在高功率電源設(shè)計(jì)中更是如此。除功能性考慮以外,工程師必須保證設(shè)計(jì)的魯棒性,以符合成本目標(biāo)要求以及熱性能和空間限制,當(dāng)然同時(shí)還要保證設(shè)計(jì)的進(jìn)度。另外,出于產(chǎn)品規(guī)范和系統(tǒng)性能的考慮,電源產(chǎn)生的電磁干擾(EMI)必須足夠低。不過(guò),電源的電磁干擾水平卻是設(shè)計(jì)中最難精確預(yù)計(jì)的項(xiàng)目。有些人甚至認(rèn)為這簡(jiǎn)直是不可能的,設(shè)計(jì)人員能做的最多就是在設(shè)計(jì)中進(jìn)行充分考慮,尤其在布局時(shí)。
盡管本文所討論的原理適用于廣泛的電源設(shè)計(jì),但我們?cè)诖酥魂P(guān)注直流到直流的轉(zhuǎn)換器,因?yàn)樗膽?yīng)用相當(dāng)廣泛,幾乎每一位硬件工程師都會(huì)接觸到與它相關(guān)的工作,說(shuō)不定什么時(shí)候就必須設(shè)計(jì)一個(gè)電源轉(zhuǎn)換器。本文中我們將考慮與低電磁干擾設(shè)計(jì)相關(guān)的兩種常見(jiàn)的折中方案;熱性能、電磁干擾以及與PCB布局和電磁干擾相關(guān)的方案尺寸等。文中我們將使用一個(gè)簡(jiǎn)單的降壓轉(zhuǎn)換器做例子,如圖1所示。
圖1.普通的降壓轉(zhuǎn)換器
在頻域內(nèi)測(cè)量輻射和傳導(dǎo)電磁干擾,這就是對(duì)已知波形做傅里葉級(jí)數(shù)展開(kāi),本文中我們著重考慮輻射電磁干擾性能。在同步降壓轉(zhuǎn)換器中,引起電磁干擾的主要開(kāi)關(guān)波形是由Q1和Q2產(chǎn)生的,也就是每個(gè)場(chǎng)效應(yīng)管在其各自導(dǎo)通周期內(nèi)從漏極到源極的電流di/dt。圖2所示的電流波形(Q和Q2on)不是很規(guī)則的梯形,但是我們的操作自由度也就更大,因?yàn)閷?dǎo)體電流的過(guò)渡相對(duì)較慢,所以可以應(yīng)用Henry Ott經(jīng)典著作《電子系統(tǒng)中的噪聲降低技術(shù)》中的公式1。我們發(fā)現(xiàn),對(duì)于一個(gè)類似的波形,其上升和下降時(shí)間會(huì)直接影響諧波振幅或傅里葉系數(shù)(In)。
圖2.Q1和Q2的波形
In=2IdSin(nπd)/nπd ×Sin(nπtr/T)/nπtr/T (1)
其中,n是諧波級(jí)次,T是周期,I是波形的峰值電流強(qiáng)度,d是占空比,而tr是tr或tf的最小值。
在實(shí)際應(yīng)用中,極有可能會(huì)同時(shí)遇到奇次和偶次諧波發(fā)射。如果只產(chǎn)生奇次諧波,那么波形的占空比必須精確為50%。而實(shí)際情況中極少有這樣的占空比精度。
諧波系列的電磁干擾幅度受Q1和Q2的通斷影響。在測(cè)量漏源電壓VDS的上升時(shí)間tr和下降時(shí)間tf,或流經(jīng)Q1和Q2的電流上升率di/dt 時(shí),可以很明顯看到這一點(diǎn)。這也表示,我們可以很簡(jiǎn)單地通過(guò)減緩Q1或Q2的通斷速度來(lái)降低電磁干擾水平。事實(shí)正是如此,延長(zhǎng)開(kāi)關(guān)時(shí)間的確對(duì)頻率高于 f=1/πtr的諧波有很大影響。不過(guò),此時(shí)必須在增加散熱和降低損耗間進(jìn)行折中。盡管如此,對(duì)這些參數(shù)加以控制仍是一個(gè)好方法,它有助于在電磁干擾和熱性能間取得平衡。具體可以通過(guò)增加一個(gè)小阻值電阻(通常小于5Ω)實(shí)現(xiàn),該電阻與Q1和Q2的柵極串聯(lián)即可控制tr和tf,你也可以給柵極電阻串聯(lián)一個(gè) "關(guān)斷二極管"來(lái)獨(dú)立控制過(guò)渡時(shí)間tr或tf(見(jiàn)圖3)。這其實(shí)是一個(gè)迭代過(guò)程,甚至連經(jīng)驗(yàn)最豐富的電源設(shè)計(jì)人員都使用這種方法。我們的最終目標(biāo)是通過(guò)放慢晶體管的通斷速度,使電磁干擾降低至可接受的水平,同時(shí)保證其溫度足夠低以確保穩(wěn)定性。
圖3.用關(guān)聯(lián)二極管來(lái)控制過(guò)渡時(shí)間
開(kāi)關(guān)節(jié)點(diǎn)的物理回路面積對(duì)于控制電磁干擾也非常重要。通常,出于PCB面積的考慮,設(shè)計(jì)者都希望結(jié)構(gòu)越緊湊越好,但是許多設(shè)計(jì)人員并不知道哪部分布局對(duì)電磁干擾的影響最大?;氐街暗慕祲悍€(wěn)壓器例子上,該例中有兩個(gè)回路節(jié)點(diǎn)(如圖4和圖5所示),它們的尺寸會(huì)直接影響到電磁干擾水平。
圖4.降壓穩(wěn)壓器模型1
圖5.降壓穩(wěn)壓器模型2
Ott關(guān)于不同模式電磁干擾水平的公式(2)示意了回路面積對(duì)電路電磁干擾水平產(chǎn)生的直接線性影響。
E=263×10-16(f2AI)(1/r) (2)
輻射場(chǎng)正比于下列參數(shù):涉及的諧波頻率(f,單位Hz)、回路面積(A,單位m2)、電流(I)和測(cè)量距離(r,單位m)。
此概念可以推廣到所有利用梯形波形進(jìn)行電路設(shè)計(jì)的場(chǎng)合,不過(guò)本文僅討論電源設(shè)計(jì)。參考圖4中的交流模型,研究其回路電流流動(dòng)情況:起點(diǎn)為輸入電容器,然后在Q1導(dǎo)通期間流向Q1,再通過(guò)L1進(jìn)入輸出電容器,最后返回輸入電容器中。
當(dāng)Q1關(guān)斷、Q2導(dǎo)通時(shí),就形成了第二個(gè)回路。之后存儲(chǔ)在L1內(nèi)的能量流經(jīng)輸出電容器和Q2,如圖5所示。這些回路面積控制對(duì)于降低電磁干擾是很重要的,在PCB走線布線時(shí)就要預(yù)先考慮清器件的布局問(wèn)題。當(dāng)然,回路面積能做到多小也是有實(shí)際限制的。
從公式2可以看出,減小開(kāi)關(guān)節(jié)點(diǎn)的回路面積會(huì)有效降低電磁干擾水平。如果回路面積減小為原來(lái)的3倍,電磁干擾會(huì)降低9.5dB,如果減小為原來(lái)的10倍,則會(huì)降低20 dB。設(shè)計(jì)時(shí),最好從最小化圖4和圖5所示的兩個(gè)回路節(jié)點(diǎn)的回路面積著手,細(xì)致考慮器件的布局問(wèn)題,同時(shí)注意銅線連接問(wèn)題。盡量避免同時(shí)使用PCB的兩面,因?yàn)橥讜?huì)使電感顯著增高,進(jìn)而帶來(lái)其他問(wèn)題。
恰當(dāng)放置高頻輸入和輸出電容器的重要性常被忽略。若干年以前,我所在的公司曾把我們的產(chǎn)品設(shè)計(jì)轉(zhuǎn)讓給國(guó)外制造商。結(jié)果,我的工作職責(zé)也發(fā)生了很大變化,我成了一名顧問(wèn),幫助電源設(shè)計(jì)新手解決文中提到的一系列需要權(quán)衡的事宜及其他眾多問(wèn)題。這里有一個(gè)含有集成鎮(zhèn)流器的離線式開(kāi)關(guān)的設(shè)計(jì)例子:設(shè)計(jì)人員希望降低最終功率級(jí)中的電磁干擾。我只是簡(jiǎn)單地將高頻輸出電容器移動(dòng)到更靠近輸出級(jí)的位置,其回路面積就大約只剩原來(lái)的一半,而電磁干擾就降低了約 6dB。而這位設(shè)計(jì)者顯然不太懂得其中的道理,他稱那個(gè)電容為"魔法帽子",而事實(shí)上我們只是減小了開(kāi)關(guān)節(jié)點(diǎn)的回路面積。
還有一點(diǎn)至重要的,新改進(jìn)的電路產(chǎn)生的問(wèn)題可能比原先的還要嚴(yán)重。換句話說(shuō),盡管延長(zhǎng)過(guò)渡時(shí)間可以減少電磁干擾,但其引起的熱效應(yīng)也隨之成為重要的問(wèn)題。有一種控制電磁干擾的方法是用全集成電源模塊代替?zhèn)鹘y(tǒng)的直流到直流轉(zhuǎn)換器。電源模塊是含有全集成功率晶體管和電感的開(kāi)關(guān)穩(wěn)壓器,它和線性穩(wěn)壓器一樣可以很輕松地融入系統(tǒng)設(shè)計(jì)中。模塊開(kāi)關(guān)節(jié)點(diǎn)的回路面積遠(yuǎn)小于相似尺寸的穩(wěn)壓器或控制器,電源模塊并不是新生事物,它的面世已經(jīng)有一段時(shí)間了,但是直到現(xiàn)在,由于一系列問(wèn)題,模塊仍無(wú)法有效散熱,且一經(jīng)安裝后就無(wú)法更改。
格式:pdf
大?。?span id="ymbfnhm" class="single-tag-height">25KB
頁(yè)數(shù): 2頁(yè)
評(píng)分: 4.5
1.1 電源模塊的論證與選擇 方案一:采用 線性元器件 LM7805 三端穩(wěn)壓器構(gòu)成穩(wěn)壓電路,為單片機(jī)等其 他模塊供電,輸出紋波小,效率低,容易發(fā)熱。 方案二:采用 元器件 2596為開(kāi)關(guān)穩(wěn)壓芯片,效率高,輸出的紋波大,不容易 發(fā)熱。 方案三:采用線性元器件 2940構(gòu)成穩(wěn)壓電路,為單片機(jī)等其他模塊供電, 輸出紋波小,效率高,不容易發(fā)熱,綜合性能高。 綜合以上三種方案,選擇方案三。 1.2 電源模塊的論證與選擇 飛行器的電機(jī)電源由 7.4伏的航模專用鋰電池直接提供, 而瑞薩單片機(jī)的工 作電壓在 3.3~5.5伏之間,所以系統(tǒng)需要進(jìn)行一次電壓轉(zhuǎn)換,為控制核心供電, 其質(zhì)量直接決定了系統(tǒng)的穩(wěn)定性。 方案一: LM7805 模擬電源模塊。 用 LM78/LM79 系列三端穩(wěn)壓 IC來(lái)組成穩(wěn)壓電源所 需的外圍元件極少, 電路內(nèi)部還有過(guò)流、 過(guò)熱及調(diào)整管的保護(hù)電路, 使用起來(lái)可 靠、方便,而且價(jià)格便
格式:pdf
大?。?span id="3a1i9ph" class="single-tag-height">25KB
頁(yè)數(shù): 26頁(yè)
評(píng)分: 4.6
負(fù)載電源模塊 PM 70 W 120/230VAC (6EP1332- 4BA00) ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ SIMATIC S7-1500/ET 200MP 負(fù)載電源模塊 PM 70 W 120/230VAC (6EP1332-4BA00) 設(shè)備手冊(cè) 01/2013 A5E31691548-AA 前言 指導(dǎo)性文檔 1 產(chǎn)品概述 2 接線 3 參數(shù) 4 報(bào)警、診斷、故障和狀態(tài)信 息 5 技術(shù)參數(shù) 6 外形尺寸圖 A 參數(shù)數(shù)據(jù)組 B Siemens AG Industry Sect
作者:鄒林,硬十員工,專注開(kāi)關(guān)電源學(xué)習(xí)研究與分享
1 概述
2 POE主要供電特性
2.1 PSE特性參數(shù)
2.2 PD功率等級(jí)
2.3 POE供電的工作過(guò)程
3 POE電源模塊簡(jiǎn)介
3.1 POE電源模塊芯片
3.2 輸入電路以及輸出電路簡(jiǎn)介
3.3 芯片外圍電路簡(jiǎn)介
3.4 變壓器和開(kāi)關(guān)管的選擇
4電源PDN和紋波噪聲
4.1電源PDN
4.2電源紋波和電源噪聲
5常見(jiàn)的紋波噪聲測(cè)試方案
5.1 紋波噪聲測(cè)試基本要求
5.2 高通濾波器特性分析
5.3 無(wú)源探頭DC耦合測(cè)試
5.4 無(wú)源探頭AC耦合測(cè)試
5.5 同軸線外部隔直電容DC50歐耦合測(cè)試
5.6 同軸線AC1M歐耦合測(cè)試
5.7 差分探頭外置電容DC耦合測(cè)試
5.8 差分探頭衰減DC耦合測(cè)試
6電源模塊電壓測(cè)試
6.1 輸入電壓測(cè)量
6.2 輸出電壓測(cè)量
7總結(jié)
1 概述:
定義:PoE全稱Power Over Ethernet,是指10BASE-T、100BASE-TX、1000BASE-T以太網(wǎng)網(wǎng)絡(luò)供電,即數(shù)據(jù)線和電源線在同一根網(wǎng)線上傳輸,其可靠供電的距離最長(zhǎng)為100米。
PoE供電系統(tǒng)包含兩種設(shè)備PSE和PD,PSE(power-sourcing equipment),主要是用來(lái)給其它設(shè)備進(jìn)行供電的設(shè)備,PD(power device),在PoE供電系統(tǒng)中用來(lái)受電的設(shè)備。
2 POE主要供電特性
2.1 PSE特性參數(shù):
(1)電壓在44~57V之間,典型值為48V
(2)允許最大電流為550mA,最大啟動(dòng)電流為500mA
(3)典型工作電流為10~350mA,超載檢測(cè)電流為350~500mA
(4)在空載條件下,最大需要電流為5mA
2.2 PD功率等級(jí)
PD功率等級(jí)分為CLASS 0、CLASS 1、CLASS 2、CLASS 3、CLASS 4、CLASS 5
CLASS 0 設(shè)備需要的最高工作功率為0.44W ~12.95W
CLASS 1 設(shè)備需要的最高工作功率為0.44W ~3.84W
CLASS 2 設(shè)備需要的最高工作功率為3.84W ~6.49W
CLASS 3 設(shè)備需要的最高工作功率為6.49W ~12.95W
CLASS 4 設(shè)備需要的最高工作功率為12.95W ~25.5W
CLASS 5 設(shè)備需要的最高工作功率為>25W
設(shè)計(jì)師可以根據(jù)功率要求將他們的設(shè)備指定為特定的級(jí)別。
2.3 POE供電的工作過(guò)程
在分級(jí)階段,PSE將向PD施加15~20V的電壓,并通過(guò)測(cè)量電流大小來(lái)確定PD的特定級(jí)別。在此階段,PD的電源部分將被欠壓鎖定(UVLO)電路維持在無(wú)源狀態(tài),以便隔離開(kāi)關(guān)級(jí),直至特征和分級(jí)階段完成。一旦分級(jí)完成后,PSE將會(huì)向PD提供全額工作電壓。
當(dāng)在一個(gè)網(wǎng)絡(luò)中布置PSE供電端設(shè)備時(shí),POE以太網(wǎng)供電工作過(guò)程如下所示:
檢測(cè):
首先PSE會(huì)發(fā)送一個(gè)測(cè)試電壓給在網(wǎng)設(shè)備以探測(cè)受電設(shè)備中的一個(gè)24.9kΩ共模電阻。測(cè)試信號(hào)開(kāi)始為2.5V,然后提升到10V,這將有助于補(bǔ)償Cat-5電纜自身阻抗帶來(lái)的損失。因?yàn)檫@種電纜最長(zhǎng)可達(dá)100m。如果PSE檢測(cè)到來(lái)自PD的適當(dāng)阻抗特征(24.9kΩ),它便會(huì)繼續(xù)提升電壓。如果檢測(cè)不到特征阻抗,PSE將不會(huì)為電纜加電。受電設(shè)備電路中的齊納二極管會(huì)保證系統(tǒng)其余部分不受測(cè)試信號(hào)的干擾。
PD端設(shè)備分類:
當(dāng)檢測(cè)到受電端設(shè)備PD之后,PSE將向PD施加15~20V的電壓,并通過(guò)測(cè)量電流大小來(lái)確定PD的特定級(jí)別。如果除了探測(cè)到第一級(jí)的電阻外沒(méi)發(fā)現(xiàn)其他分級(jí)電路,該設(shè)備被定義成零級(jí)別。在此階段,PD的電源部分將被欠壓鎖定(UVLO)電路維持在無(wú)源狀態(tài),以便隔離開(kāi)關(guān)級(jí),直至特征和分級(jí)階段完成。
開(kāi)始供電:
分級(jí)完成后,在一個(gè)可配置時(shí)間(一般小于15μs)的啟動(dòng)期內(nèi),PSE設(shè)備開(kāi)始從低電壓向PD設(shè)備
a)供電,直至提供48V的直流電源。
b)供電:為PD設(shè)備提供穩(wěn)定可靠48V的直流電,滿足PD設(shè)備不越過(guò)12.95W的功率消耗。
c)斷電:若PD設(shè)備從網(wǎng)絡(luò)上斷開(kāi)時(shí),PSE就會(huì)快速地(一般在300~400ms之內(nèi))停止為PD設(shè)備供電,并重復(fù)檢測(cè)過(guò)程以檢測(cè)線纜的終端是否連接PD設(shè)備。
3 POE電源模塊簡(jiǎn)介
本次POE電源模塊采用MAX5969B和MAX5974A芯片來(lái)實(shí)現(xiàn),功率等級(jí)為CLASS 4的POE電源。POE電源模塊的電路拓?fù)浣Y(jié)構(gòu)采用反激式變換器實(shí)現(xiàn),運(yùn)用變壓器原邊反饋穩(wěn)壓以及副邊同步整流技術(shù)。輸入電壓范圍在36V~57V之間,輸出電壓穩(wěn)點(diǎn)在5V,具有過(guò)壓保護(hù)、過(guò)流保護(hù)等特點(diǎn)。如圖1所示為POE電源的原理圖。
3.1 POE電源模塊芯片
芯片MAX5969B為用電設(shè)備(PD)提供符合以太網(wǎng)供電(PoE)系統(tǒng)IEEE802.3af/at標(biāo)準(zhǔn)的完整接口。MAX5969B為PD提供檢測(cè)信號(hào)、分級(jí)信號(hào)以及帶有浪涌電流控制的集成隔離功率開(kāi)關(guān)。發(fā)生浪涌期間,MAX5969B將電流限制在180mA以內(nèi),直到隔離功率MOSFET完全開(kāi)啟后切換到較高的限流值(720mA至880mA)。器件具有輸入U(xiǎn)VLO,帶有較寬的滯回和長(zhǎng)周期干擾脈沖屏蔽,以補(bǔ)償雙絞線電纜的阻性衰減,確保上電/掉電期間無(wú)干擾傳輸。MAX5969B輸入端能夠承受高達(dá)100V的電壓。
MAX5969B芯片特性如下:
(1)兼容于IEEE 802.3af/at
(2)2級(jí)事件分級(jí)
(3)簡(jiǎn)易的墻上適配器接口
(4)0至5級(jí)POE分級(jí)
(5)100V絕對(duì)最大額定輸入
(6)180mA最大浪涌電流限制
(7)正常工作期間電流限制在720mA至880mA
(8)電流限制和折返式保護(hù)
(9)傳統(tǒng)的36V UVLO (MAX5969A)
(10)IEEE 802.3af/at兼容、40V UVLO (MAX5969B)
(11)過(guò)熱保護(hù)
(12)增強(qiáng)散熱的3mm × 3mm、10引腳TDFN封裝
如圖2所示為MAX5969B的引腳圖,接下來(lái)簡(jiǎn)要介紹下每個(gè)引腳。
圖2 MAX5969B引腳圖
表1 MAX5969B引腳簡(jiǎn)介
引腳 |
名稱 |
功能 |
1 |
VDD |
正電源輸入。在VDD和VSS之間連接一個(gè)68nF (最小值)的旁路電容。 |
2 |
DET |
檢測(cè)電阻輸入。在DET和VDD之間連接一個(gè)特征電阻(RDET= 24.9kΩ)。 |
3 |
N.C. |
無(wú)連接,沒(méi)有內(nèi)部連接。 |
4 |
I.C. |
內(nèi)部連接,懸空。 |
5 |
VSS |
負(fù)電源輸入。VSS連接到集成隔離n溝道功率MOSFET的源極。 |
6 |
RTN |
隔離MOSFET的漏極。RTN連接至集成隔離n溝道功率MOSFET的漏極,將RTN連接至后續(xù)的DC-DC轉(zhuǎn)換器地。 |
7 |
WAD |
墻上電源適配器檢測(cè)器輸入。當(dāng)VDD- VSS超過(guò)標(biāo)記事件門限時(shí),使能墻上適配器檢測(cè)。當(dāng)WAD與RTN之間的電壓大于9V時(shí),將進(jìn)行檢測(cè)。當(dāng)連接墻上電源適配器時(shí),斷開(kāi)隔離n溝道功率MOSFET,開(kāi)啟2EC吸電流電路。當(dāng)不使用墻上電源適配器或其它輔助電源時(shí),將WAD直接連接至RTN。 |
8 |
PG |
電源就緒指示開(kāi)漏輸出。熱插拔MOSFET開(kāi)關(guān)導(dǎo)通時(shí),PG將吸收230μA電流以禁止后續(xù)的DC-DC轉(zhuǎn)換器,直至熱插拔開(kāi)關(guān)完全導(dǎo)通。檢測(cè)、分級(jí)和穩(wěn)壓供電模式下,禁止PG吸電流。 |
9 |
2EC |
低電平有效2級(jí)事件分級(jí)檢測(cè)或墻上適配器檢測(cè)輸出。當(dāng)檢測(cè)到2類PSE或墻上適配器時(shí),使能2EC處的1.5mA吸電流。當(dāng)由2類PSE供電時(shí),在隔離MOSFET完全開(kāi)啟后,2EC吸電流使能,并鎖定為低電平,直到VIN下降至UVLO門限以下。當(dāng)墻上適配器電源(通常大于9V)作用到WAD和RTN之間時(shí),2EC也會(huì)有效。WAD觸發(fā)2EC時(shí),不會(huì)鎖定2EC。 |
10 |
CLS |
分級(jí)電阻輸入。在CLS和VSS之間連接電阻(RCLS),設(shè)置所要求的分級(jí)電流。關(guān)于特定PD分級(jí)對(duì)應(yīng)的電阻值,。 |
–– |
EP |
裸焊盤。請(qǐng)勿將EP作為VSS的電氣連接,EP通過(guò) |
芯片MAX5969B工作過(guò)程的簡(jiǎn)單介紹,MAX5969B有4種不同的工作模式:
PD檢測(cè)、PD分級(jí)、標(biāo)記事件和PD供電模式。檢測(cè)模式是用來(lái)檢測(cè)設(shè)備是不是PD設(shè)備;分級(jí)模式是用來(lái)給PD設(shè)備確定輸入功率為多大;標(biāo)記事件一般用于2級(jí)分級(jí)模式檢測(cè);供電模式為正式給PD設(shè)備供電。
當(dāng)輸入電壓在1.4V和10.1V之間時(shí)器件進(jìn)入PD檢測(cè)模式;當(dāng)輸入電壓在12.6V和20V之間時(shí),器件進(jìn)入PD分級(jí)模式;一旦輸入電壓超過(guò)VON,器件則進(jìn)入PD供電模式。
檢測(cè)模式(1.4V≤ VIN ≤ 10.1V):
檢測(cè)模式下,PSE向VIN施加1.4V至10.1V范圍(最小步長(zhǎng)為1V)的兩個(gè)電壓,并記錄這兩點(diǎn)處的電流測(cè)量值。然后,PSE計(jì)算DV/DI以確保連接了24.9kΩ特征電阻。在VDD和DET之間連接特征電阻(RDET),以確保正確的特征檢測(cè)。檢測(cè)模式下,MAX5969B將DET拉低。當(dāng)輸入電壓超過(guò)12.5V時(shí),DET變?yōu)楦咦钁B(tài)。檢測(cè)模式下,MAX5969B的大多數(shù)內(nèi)部電路都處于關(guān)斷狀態(tài),偏置電流小于10μA。
分級(jí)模式(12.6V≤ VIN ≤ 20V) :
分級(jí)模式下,PSE根據(jù)PD所需的功耗對(duì)PD進(jìn)行分級(jí),使PSE能夠有效管理功率分配。0至5級(jí)的定義可通過(guò)查看數(shù)據(jù)手冊(cè)知道(IEEE 802.3af/at標(biāo)準(zhǔn)僅定義了0至4級(jí),5級(jí)用于特殊要求)。CLS與VSS之間連接一個(gè)外部電阻(RCLS),用于設(shè)置分級(jí)電流。PSE通過(guò)向PD輸入施加電壓并測(cè)量PSE輸出的電流來(lái)確定PD的級(jí)別。當(dāng)PSE施加的電壓在12.6V和20V之間時(shí)。PSE使用分級(jí)電流信息來(lái)對(duì)PD功率要求進(jìn)行分級(jí)。分級(jí)電流包括RCLS吸收的電流和MAX5969B的電源電流。所以PD吸收的總電流在IEEE 802.3af/at標(biāo)準(zhǔn)的指標(biāo)范圍之內(nèi)。當(dāng)器件處于供電模式時(shí),則關(guān)閉分級(jí)電流。
供電模式(喚醒模式)
當(dāng)VIN上升到欠壓鎖定門限(VON)以上時(shí),MAX5969B進(jìn)入供電模式。當(dāng)VIN上升到VON以上時(shí),MAX5969B開(kāi)啟內(nèi)部n溝道隔離MOSFET,將VSS連接至RTN,內(nèi)部浪涌電流限制設(shè)置為135mA (典型值)。當(dāng)RTN處的電壓接近VSS并且浪涌電流降至浪涌門限以下時(shí),隔離MOSFET完全開(kāi)啟。一旦完全開(kāi)啟隔離MOSFET,MAX5969B將電流限制更改為800mA。在功率MOSFET完全開(kāi)啟之前,電源就緒開(kāi)漏輸出(PG)保持為低電平,持續(xù)時(shí)間至少為,以在浪涌期間禁止后續(xù)的DC-DC轉(zhuǎn)換器。
芯片還有一些其它的工作狀態(tài),例如欠壓鎖定、熱關(guān)斷保護(hù)、墻上電源適配器檢測(cè)和工作等。
芯片MAX5974A為寬輸入電壓范圍、有源鉗位、電流模式PWM控制器,用于控制以太網(wǎng)供電(PoE)的用電設(shè)備(PD)中的正激轉(zhuǎn)換器。MAX5974A適用于通用或電信系統(tǒng)的輸入電壓范圍。芯片MAX5974A獨(dú)特的電路設(shè)計(jì)能夠在不需要光耦的前提下獲得穩(wěn)定的輸出。
MAX5974A有很多特性,以下簡(jiǎn)要介紹幾個(gè):
(1)峰值電流模式控制、有源鉗位、正激PWM控制器
(2)無(wú)需光耦即可獲得穩(wěn)壓輸出
(3)100kHz至600kHz可編程、±8%抖動(dòng)控制的開(kāi)關(guān)頻率,可同步至高達(dá)1.2MHz
(4)可編程頻率抖動(dòng),支持低EMI、擴(kuò)頻工作
(5)可編程死區(qū)時(shí)間、PWM軟啟動(dòng)、電流斜率補(bǔ)償
如圖3所示為芯片的引腳圖。
圖3 MAX5974引腳圖
表2 MAX5974A引腳簡(jiǎn)介
引腳 |
名稱 |
功能 |
1 |
DT |
死區(qū)時(shí)間編程電阻連接。將電阻RDT從DT連接至GND,設(shè)置NDRV和AUXDRV信號(hào)之間的死區(qū)時(shí)間。參考死區(qū)時(shí)間部分計(jì)算具體死區(qū)時(shí)間對(duì)應(yīng)的電阻值。 |
2 |
DITHER/ SYNC |
頻率加抖編程或同步連接。對(duì)于擴(kuò)頻操作,將一個(gè)電容從DITHER連接至GND,將一個(gè)電阻從DITHER連接至RT。如需將內(nèi)部振蕩器同步至外部提供的頻率,請(qǐng)將DITHER/SYNC連接至同步脈沖。 |
3 |
RT |
開(kāi)關(guān)頻率編程電阻連接。將電阻RRT從RT連接至GND,設(shè)置PWM開(kāi)關(guān)頻率。參考振蕩器/開(kāi)關(guān)頻率部分計(jì)算具體振蕩器頻率對(duì)應(yīng)的電阻值。 |
4 |
FFB |
頻率折返門限編程輸入。將一個(gè)電阻從FFB連接至GND,設(shè)置輸出平均電流門限。低于該門限時(shí),轉(zhuǎn)換器將開(kāi)關(guān)頻率折返至其原始值的1/2。該引腳連接至GND時(shí),禁用頻率折返功能。 |
5 |
COMP |
跨導(dǎo)放大器輸出和PWM比較器輸入。使用電平轉(zhuǎn)換器將COMP轉(zhuǎn)換至低電平,并連接至PWM比較器的反相輸入。 |
引腳 |
名稱 |
功能 |
6 |
FB |
跨導(dǎo)放大器反相輸入。 |
7 |
SGND |
信號(hào)地。 |
8 |
CSSC |
帶有斜率補(bǔ)償輸入的電流檢測(cè)。連接在CSSC與CS之間的電阻用于設(shè)置斜率補(bǔ)償量。 |
9 |
CS |
電流檢測(cè)輸入。用于平均電流檢測(cè)和逐周期限流的電流檢測(cè)連接。峰值限流觸發(fā)電壓為400mV,反向限流觸發(fā)電壓為-100mV。 |
10 |
PGND |
功率地。PGND為柵極驅(qū)動(dòng)器的開(kāi)關(guān)電流回路。 |
11 |
NDRV |
主開(kāi)關(guān)柵極驅(qū)動(dòng)器輸出。 |
12 |
AUXDRV |
pMOS有源鉗位開(kāi)關(guān)柵極驅(qū)動(dòng)器輸出。AUXDRV亦可驅(qū)動(dòng)脈沖變壓器,用于同步反激應(yīng)用。 |
13 |
IN |
轉(zhuǎn)換器電源輸入。IN具有寬UVLO滯回,能夠?qū)崿F(xiàn)高效率電源設(shè)計(jì)。當(dāng)使用使能輸入EN設(shè)置電源的UVLO電平時(shí),在IN和PGND之間連接一個(gè)齊納二極管,確保VIN總是被鉗位至低于其絕對(duì)最大額定值26V。 |
14 |
EN |
使能輸入。當(dāng)EN電壓低于VENF時(shí),柵極驅(qū)動(dòng)器被禁用,器件處于低功耗UVLO模式。當(dāng)EN電壓高于VENR時(shí),器件檢查其它使能條件。 |
15 |
DCLMP |
前饋?zhàn)畲笳伎毡茹Q位編程輸入。在輸入電源電壓DCLMP和GND之間連接一個(gè)電阻分壓器。DCLMP上的電壓設(shè)置轉(zhuǎn)換器的最大占空比(DMAX),該值與輸入電源電壓成反比,所以MOSFET在發(fā)生瞬態(tài)期間仍然處于受保護(hù)狀態(tài)。 |
16 |
SS |
軟啟動(dòng)編程電容連接。在SS和GND之間連接一個(gè)電容,設(shè)置軟啟動(dòng)周期。該電容還決定打嗝模式限流的重啟時(shí)間。SS和GND之間的電阻亦可用于設(shè)置低于75%的DMAX。 |
— |
EP |
裸焊盤。內(nèi)部連接至GND。連接至大面積接地區(qū)域以增強(qiáng)散熱。不要將其作為電氣連接點(diǎn)。 |
3.2 輸入電路以及輸出電路簡(jiǎn)介
輸入電壓取自于網(wǎng)絡(luò)端口的48V電源,輸入電壓經(jīng)過(guò)兩個(gè)整流橋D1、D2,其中D26是一個(gè)瞬態(tài)抑制二極管SMBJ54A用來(lái)保護(hù)輸入過(guò)壓。
輸出電壓通過(guò)反激變壓器的副邊整流后得到,由于整流后脈動(dòng)電壓較大,所以會(huì)在整流后添加輸出濾波電容,輸出濾波電容一般會(huì)選擇幾個(gè)大電容再加一個(gè)小電容并聯(lián),大電容起到儲(chǔ)能和濾波的作用,小電容用來(lái)高頻去耦,幾個(gè)電容并聯(lián)可以將輸出電阻降到最小。本模塊POE電源選擇3顆封裝為1206,容值大小為47uF的陶瓷電容。反激變壓器選擇SIR412DP開(kāi)關(guān)管實(shí)現(xiàn)有源整流,利用變壓器副邊繞組來(lái)獲得驅(qū)動(dòng)電壓,這樣變壓器原邊就不需要消磁電路或者吸收電路,而是把能量用來(lái)驅(qū)動(dòng)SIR412DP開(kāi)關(guān)管,實(shí)現(xiàn)同步整流技術(shù)。開(kāi)關(guān)管的漏極和源極并聯(lián)RCD吸收電路,用來(lái)抑制開(kāi)關(guān)管漏源端的電壓尖峰而達(dá)到保護(hù)開(kāi)關(guān)管的目的。雖然說(shuō)MOSFET的是一種壓控壓型的開(kāi)關(guān)管,但是對(duì)于開(kāi)關(guān)管開(kāi)通和關(guān)閉都是給開(kāi)關(guān)管的寄生電容充電來(lái)打開(kāi)或關(guān)閉,這就需要一定的驅(qū)動(dòng)電流。所以在驅(qū)動(dòng)電路中串聯(lián)一個(gè)10歐姆的電阻。
3.3 芯片外圍電路簡(jiǎn)介
芯片MAX5969B主要作用體現(xiàn)在剛剛上電的時(shí)候和PSE供電模塊用來(lái)通信的芯片,對(duì)于每一個(gè)POE電源來(lái)說(shuō),這種類似的芯片是必不可少的。市面上有些號(hào)稱是POE電源的往往只是把48V的電壓變成5V或者其它的電壓,在上電的時(shí)候并沒(méi)有檢測(cè)、分級(jí)的階段,這對(duì)于受電設(shè)備來(lái)說(shuō)是危險(xiǎn)的。檢測(cè)電源是POE電源還是非POE電源的一般方法是,拿萬(wàn)用表測(cè)量供電腳,一般是網(wǎng)絡(luò)端口的4,5、7,8腳,如果端口輸出是穩(wěn)定的48V電壓,這說(shuō)明電源是非POE電源;如果測(cè)量的電壓在2~10V跳動(dòng),則說(shuō)明電源是POE電源,電壓跳動(dòng)是在對(duì)PD端進(jìn)行檢測(cè)。
芯片MAX5969B的VDD是電源引腳,VDD和VSS之間接有0.1uF的電容用來(lái)旁路,電容C7和C13用來(lái)儲(chǔ)能和濾波。
DET接一個(gè)24.9K的電阻到Vin,這個(gè)電阻是特征電阻不可更改,要是把這個(gè)電阻的阻值改變了,POE電源工作會(huì)不正常。
VSS引腳是接輸入整流過(guò)后的地端,VSS內(nèi)部通過(guò)MOSFET管和變壓器原邊的接地端相連。當(dāng)芯片處于檢測(cè)與分級(jí)階段時(shí)候,內(nèi)部MOSFET處于斷開(kāi)的狀態(tài)。
RTN引腳接變壓器原邊的地端,是后繼DC-DC的功率地端。
WAD引腳是用來(lái)接墻上適配器電源供電,本模塊的POE電源沒(méi)有用上墻上適配器,但是在電路設(shè)計(jì)的時(shí)候也考慮到了,只是沒(méi)有焊接相關(guān)器件。
PG引腳內(nèi)部是MOSFET漏極輸出,在芯片內(nèi)部的MOSFET完全開(kāi)啟之前,PG保持為低電平,PG端接MAX5974A的使能端,故PG在保持低電平期間,MAX5974A是處于不工作狀態(tài)。PG外接1nF的電容旁路。
2EC引腳是2級(jí)事件檢測(cè)腳,本模塊沒(méi)有用上直接上拉100K電阻到RTN,以防PD設(shè)備處于2級(jí)狀態(tài)時(shí),2EC引腳有一個(gè)回路。
CLS引腳是分級(jí)電阻輸入引腳,CLS引腳接多大電阻到VSS地端,就決定了POE電源是處于哪一級(jí)??刹榭磾?shù)據(jù)手冊(cè)知當(dāng)接30.9歐姆電阻時(shí),PD設(shè)備設(shè)置為4級(jí)電路狀態(tài),也就是說(shuō)PD設(shè)備要消耗12.95-25.5W的功率。
芯片MAX5974A是一款電源管理芯片,芯片內(nèi)部集成了許多功能,只要根據(jù)芯片數(shù)據(jù)手冊(cè)推薦的外圍電路搭建方法,只需簡(jiǎn)單的配置些電容和電阻很快就可以設(shè)計(jì)出一塊電源模塊。接下來(lái)將介紹芯片每個(gè)引腳外圍電路的搭建,來(lái)更好的理解芯片以及反激式開(kāi)關(guān)電源。
DT引腳是用來(lái)設(shè)置死區(qū)時(shí)間的,由于MAX5974A這款芯片提供了兩個(gè)柵極驅(qū)動(dòng)器輸出,一個(gè)是NDRV主開(kāi)關(guān)柵極驅(qū)動(dòng)器輸出,是用來(lái)驅(qū)動(dòng)變壓器原邊是處于斷開(kāi)狀態(tài)還是出來(lái)接通狀態(tài)。一個(gè)是AUXDRV是用來(lái)給變壓器副邊開(kāi)關(guān)管實(shí)現(xiàn)同步整流的驅(qū)動(dòng)信號(hào),由于變壓器原邊開(kāi)關(guān)管和變壓器副邊開(kāi)關(guān)管不能夠同時(shí)開(kāi)啟,盡管NDRV和AUXDRV是互補(bǔ)輸出的,但是由于開(kāi)關(guān)管本身的開(kāi)通和關(guān)斷過(guò)程不理想,在開(kāi)通和關(guān)斷的時(shí)候有一定的時(shí)間延遲,故此需要添加一定的死區(qū)時(shí)間。死區(qū)時(shí)間設(shè)置時(shí)間在40ns至400ns之間,死區(qū)時(shí)間的設(shè)置是通過(guò)外接一個(gè)電阻到RTN地端,具體多大的電阻設(shè)置多長(zhǎng)的死區(qū)時(shí)間,可通過(guò)如下公式得到:
本模塊選擇=27KW,死區(qū)時(shí)間就為108ns,對(duì)于這個(gè)死區(qū)時(shí)間已經(jīng)足夠了,因?yàn)楸敬问褂玫腗OSFET的延遲時(shí)間都在40ns以內(nèi)。
DITHER/SYNC引腳為頻率加抖編程或者同步連接引腳。在DITHER/SYNC和RTN地之間連接一個(gè)電容,在DITHER/SYNC和RT之間連接一個(gè)電阻,可以在范圍內(nèi)對(duì)轉(zhuǎn)換器的開(kāi)關(guān)頻率加抖,從而降低EMI。具體過(guò)程是DITHER/SYNC處的電流源以50uA電流將電容C14充電至2V。達(dá)到該點(diǎn)后,以50uA電流將C14放電至0.4V。電容充電和放電會(huì)在DITHER/SYNC上產(chǎn)生一個(gè)三角波,峰值分別為0.4V和2V,通常情況下,頻率為1KHZ。電容C14的計(jì)算公式為:
本模塊選擇C14=10nF,其中連接電阻公式如下:
其中,%DITHER為加抖量,表示為開(kāi)關(guān)頻率的百分比。將RDITHER設(shè)置為10 RRT,產(chǎn)生±10%的抖動(dòng)。本模塊中沒(méi)有焊接次電阻,但是也預(yù)留了位置,需要的時(shí)候可以焊上次電阻。
RT引腳是開(kāi)關(guān)頻率編程電阻連接。將連接至RTN地,設(shè)置PWM開(kāi)關(guān)頻率在100KHZ~600KHZ之間??蓞⒖既缦鹿剑?/p>
為PWM波的開(kāi)關(guān)頻率,本模塊電源選擇為29.4K,也就是說(shuō)開(kāi)關(guān)頻率為296KHZ。
FFB引腳是頻率折返門限編程輸入。將一個(gè)電阻從FFB連接至RTN地,設(shè)置輸出平均電流門限。低于該門限時(shí),轉(zhuǎn)換器將開(kāi)關(guān)頻率折返至其原始值的1/2。該引腳連接至RTN地時(shí),禁用頻率折返功能。這腳的功能是為了在輕載的時(shí)候降低開(kāi)關(guān)頻率,以降低開(kāi)關(guān)損耗,提高轉(zhuǎn)換器效率,節(jié)約能源的作用。連接的電阻計(jì)算可通過(guò)如下公式得到:
其中,RFFB為FFB和RTN地之間的電阻,ILOAD(LIGHT)為輕載條件下觸發(fā)頻率折返的電流,RCS為連接在CS和RTN地之間的檢測(cè)電阻,IFFB為FFB源出至RFFB的電流(30μA,典型值)。本模塊通過(guò)一個(gè)0歐姆電阻相連。
COMP引腳是跨導(dǎo)放大器輸出和PWM比較器輸入。使用電平轉(zhuǎn)換器將COMP轉(zhuǎn)換至低電平,并連接至PWM比較器的反相輸入。此引腳是用來(lái)改善環(huán)路穩(wěn)定性,使輸出電壓穩(wěn)定紋波小。本模塊采用二型環(huán)路補(bǔ)償網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)環(huán)路的穩(wěn)定,具體由原理圖中C15、C16和R10構(gòu)成的電路來(lái)完成。
FB引腳是跨導(dǎo)放大器反相輸入。MAX5974A包含一個(gè)帶有采樣-保持輸入的內(nèi)部誤差放大器。誤差放大器的同相輸入連接至內(nèi)部基準(zhǔn),在反相輸入提供反饋。高開(kāi)環(huán)增益和單位增益帶寬可實(shí)現(xiàn)良好的閉環(huán)帶寬和瞬態(tài)響應(yīng)。采用下式計(jì)算變壓器原邊耦合的輸出電壓:
MAX5974A的為1.52V,其中反饋電壓可通過(guò)如下公式得到:
本模塊的
本模塊的反饋電壓取自于變壓器原邊耦合的電壓,而沒(méi)有使用傳統(tǒng)的利用TL431和PC817的方案來(lái)獲得反饋電壓從而使輸出電壓穩(wěn)定,但是在電路設(shè)計(jì)的時(shí)候也預(yù)留了TL431和PC817反饋的方案來(lái)獲得輸出電壓穩(wěn)定。變壓器原邊耦合的電壓還有一個(gè)作用就是給MAX5974A芯片提供電源輸入??赏ㄟ^(guò)設(shè)置反饋部分的電壓來(lái)改變輸出電壓,可以由如下公式可知:
其中, VOUT為輸出電壓, NC/NO為耦合輸出與主輸出繞組的匝數(shù)比。選擇的匝數(shù)比要使VCOUPLED高于UVLO關(guān)斷電平(7.35V,最大值)達(dá)一定裕量,該裕量由“跨越”一次掉電所需的保持時(shí)間決定。
SGND引腳為信號(hào)地引腳連接到RTN地。
CSSC引腳帶有斜率補(bǔ)償輸入的電流檢測(cè)。連接在CSSC與CS之間的電阻用于設(shè)置斜率補(bǔ)償量。器件在CSSC端產(chǎn)生電流斜坡,其峰值在振蕩器占空比為80%時(shí)達(dá)50μA。連接在CSSC至CS的外部電阻將該電流斜坡轉(zhuǎn)換至可編程斜率補(bǔ)償幅值,加至電流檢測(cè)信號(hào),用于穩(wěn)定峰值電流模式控制環(huán)路。斜率補(bǔ)償信號(hào)的變化率由下式給出:
其中,m為斜率補(bǔ)償信號(hào)的變化率;RCSSC為連接在CSSC和CS之間的電阻值,用于設(shè)置變化率;fSW為開(kāi)關(guān)頻率。本模塊選擇電阻R18為4.02K。
CS引腳是電流檢測(cè)輸入。用于平均電流檢測(cè)和逐周期限流的電流檢測(cè)連接。峰值限流觸發(fā)電壓為400mV,反向限流觸發(fā)電壓為-100mV。連接在n溝道MOSFET源極和RTN地之間的電流檢測(cè)電阻(典型應(yīng)用電路中的RCS)用于設(shè)置限流值。限流比較器的電壓觸發(fā)電平(VCS-PEAK)為400mV。利用下式計(jì)算RCS值:
其中,IPRI為變壓器原邊的峰值電流,該電流也流經(jīng)MOSFET。當(dāng)該電流(通過(guò)電流檢測(cè)電阻)產(chǎn)生的電壓超過(guò)限流比較器門限時(shí),MOSFET驅(qū)動(dòng)器(NDRV)在35ns()內(nèi)終止電流導(dǎo)通周期。本模塊的限流電阻選擇R21、R25為1206封裝阻值為0.25歐姆。利用一個(gè)小型RC網(wǎng)絡(luò),對(duì)檢測(cè)波形上的前沿尖峰進(jìn)行額外的濾波。濾波電路的角頻率設(shè)置在10MHz至20MHz之間。本模塊選擇R26為499歐姆和電容C24為330pF。
PGND引腳為功率地接RTN地端。PGND為柵極驅(qū)動(dòng)器的開(kāi)關(guān)電流回路。
NDRV引腳為主開(kāi)關(guān)柵極驅(qū)動(dòng)器輸出。此腳通過(guò)一個(gè)小電阻接到主開(kāi)關(guān)管SI7450的柵極來(lái)驅(qū)動(dòng)SI7450。此腳輸出的頻率為296KHZ。
AUXDRV引腳pMOS有源鉗位開(kāi)關(guān)柵極驅(qū)動(dòng)器輸出。AUXDRV亦可驅(qū)動(dòng)脈沖變壓器,用于同步反激應(yīng)用。此引腳和NDRV為互補(bǔ)輸出,本模塊是采用變壓器副邊耦合來(lái)驅(qū)動(dòng)輸出整流開(kāi)關(guān)管,故此腳并沒(méi)有用上,處于懸空狀態(tài),但是在設(shè)計(jì)的時(shí)候,把其驅(qū)動(dòng)的外圍電路也包含了進(jìn)去,需要用其來(lái)驅(qū)動(dòng)輸出整流開(kāi)關(guān)管時(shí)可以把相關(guān)電路焊上,但是不能同時(shí)有變壓器副邊耦合驅(qū)動(dòng)和用AUXDRV驅(qū)動(dòng)存在。
VC引腳是轉(zhuǎn)換器電源輸入。IN具有寬UVLO滯回,能夠?qū)崿F(xiàn)高效率電源設(shè)計(jì)。當(dāng)使用使能輸入EN設(shè)置電源的UVLO電平時(shí),在IN和PGND之間連接一個(gè)齊納二極管,確保VIN總是被鉗位至低于其絕對(duì)最大額定值26V。本模塊的電源輸入取自變壓器原邊耦合的電壓,變壓器原邊耦合的電壓通過(guò)D10整流后給芯片的VC,芯片VC和RTN地之間接有22V穩(wěn)壓管D28以及電容C4和C37。其中與二極管D10并聯(lián)的RC電路是用來(lái),在上電瞬間防止二極管有大電流的沖擊,在上電瞬間電流先通過(guò)RC電路,而保護(hù)二極管D10。
EN引腳使能輸入。當(dāng)EN電壓低于VENF時(shí),柵極驅(qū)動(dòng)器被禁用,器件處于低功耗UVLO模式。當(dāng)EN電壓高于VENR時(shí),器件檢查其它使能條件。使能輸入EN用于使能或禁用器件。EN連接至IN時(shí),器件始終保持工作。EN連接至地時(shí),可禁用器件,并將電流損耗降低至150μA。本模塊的EN端通過(guò)一個(gè)100K的電阻連接到VC端,EN端也和MAX5969B的PG引腳相連,以用于在供電之前禁用MAX5974B。
DCLMP引腳是前饋?zhàn)畲笳伎毡茹Q位編程輸入。在輸入電源電壓DCLMP和GND之間連接一個(gè)電阻分壓器。DCLMP上的電壓設(shè)置轉(zhuǎn)換器的最大占空比(DMAX),該值與輸入電源電壓成反比,所以MOSFET在發(fā)生瞬態(tài)期間仍然處于受保護(hù)狀態(tài)??梢杂扇缦鹿降玫椒謮弘娮瑁?/p>
本模塊
分別為原理圖中的R8和R7。
SS引腳是軟啟動(dòng)編程電容連接。在SS和GND之間連接一個(gè)電容,設(shè)置軟啟動(dòng)周期。該電容還決定打嗝模式限流的重啟時(shí)間。SS和GND之間的電阻亦可用于設(shè)置低于75%的DMAX。在SS和GND之間連接一個(gè)電容CSS,設(shè)置軟啟動(dòng)時(shí)間。VSS控制啟動(dòng)期間的振蕩器占空比,使占空比緩慢、平滑地增大至其穩(wěn)態(tài)值。按下式計(jì)算CSS值:
其中,ISS-CH (10μA,典型值)為軟啟動(dòng)期間的CSS充電電流,tSS為設(shè)置的軟啟動(dòng)時(shí)間。通過(guò)在SS和地之間連接電阻,可將SS上的電壓設(shè)為低于2V。VSS計(jì)算如下:
本模塊電源選擇電容C3=22nF,電阻R35=1MW。
3.3 變壓器和開(kāi)關(guān)管的選擇
反激變壓器設(shè)計(jì)的成功與否很大一部分要取決于變壓器設(shè)計(jì)的好壞,不同的電路拓?fù)浣Y(jié)構(gòu)有不同的計(jì)算公式,但是基本都是基于AP法來(lái)設(shè)計(jì)變壓器。有些做電源具有豐富經(jīng)驗(yàn)的人往往能夠設(shè)計(jì)出很好的變壓器,并且在設(shè)計(jì)的時(shí)候并沒(méi)有過(guò)多的計(jì)算。通過(guò)公式所計(jì)算出來(lái)的變壓器參數(shù)往往只有變壓器匝比、線徑、變壓器磁芯以及變壓器骨架等,要想設(shè)計(jì)一個(gè)好的變壓器只有這些是不夠的,還要考慮變壓器的繞法,變壓器怎樣繞是一個(gè)重要的參數(shù)。因?yàn)椴煌淖儔浩骼@法所得到的變壓器最終性能有很大差別,比如采用三明治繞法的變壓具有較低的漏感。反正變壓器的設(shè)計(jì)有太多東西需要考慮,如果所繞的變壓器性能較差,可以適當(dāng)調(diào)整匝數(shù)、改變繞法或者換一個(gè)變壓器磁芯等。
本模塊選用外購(gòu)的變壓器Sumida T225,因?yàn)楸灸K的開(kāi)關(guān)頻率較高,對(duì)于變壓器尺寸也有所要求,經(jīng)過(guò)多次討論決定外購(gòu)變壓器而不是自己繞。通過(guò)測(cè)試發(fā)現(xiàn)此變壓器性能很好,變壓器在重載的時(shí)候沒(méi)有什么異常發(fā)生,輸出電壓也正常。
反激式開(kāi)關(guān)電源的開(kāi)關(guān)管選擇要滿足漏源能夠承受輸入電壓外加變壓器副邊耦合過(guò)來(lái)的電壓的1.5倍,才能保證開(kāi)關(guān)管不會(huì)在關(guān)斷的時(shí)候被擊穿。開(kāi)關(guān)管漏源也要能夠流過(guò)2倍的輸入電流,才能保證開(kāi)關(guān)管不會(huì)因過(guò)流導(dǎo)致?lián)p壞。開(kāi)關(guān)管的損耗在整個(gè)電源模塊損耗中占有一定比例,一般會(huì)選擇開(kāi)關(guān)管上升和下降時(shí)間短的MOSFET,保證在開(kāi)關(guān)管導(dǎo)通和關(guān)閉的一段時(shí)間里電壓和電流疊加的部分少,降低開(kāi)關(guān)管的損耗。
4電源PDN和紋波噪聲
4.1 電源PDN
電源紋波噪聲測(cè)試是一個(gè)比較復(fù)雜的測(cè)試難題,不同方法測(cè)量到的結(jié)果不同,即使同一種測(cè)試方法不同人測(cè)試結(jié)果一般也會(huì)存在差別。
對(duì)于終端類產(chǎn)品,不管是CPU、GPU、DDR等,其芯片內(nèi)部都有成千上萬(wàn)的晶體管,芯片內(nèi)不同的電路需要不同的電源供電,常見(jiàn)有Vcore、Vcpu、Vmem、VIO、Vgpu、Vpll等,這些電源有DC-DC電源模塊供電,也有LDO電源模塊供電,都統(tǒng)一由PMU來(lái)管理。
如圖4所示,為芯片的PDN圖,芯片的供電環(huán)路從穩(wěn)壓模塊VRM開(kāi)始,到PCB的電源網(wǎng)絡(luò),芯片的ball引腳,芯片封裝的電源網(wǎng)絡(luò),最后到達(dá)die. 當(dāng)芯片工作在不同負(fù)載時(shí),VRM無(wú)法實(shí)時(shí)響應(yīng)負(fù)載對(duì)電流快速變化的需求,在芯片電源電壓上產(chǎn)生跌落,從而產(chǎn)生了電源噪聲。對(duì)于開(kāi)關(guān)電源模塊的VRM,電源自身會(huì)產(chǎn)生和開(kāi)關(guān)頻率一致的電源紋波,始終疊加在電源上輸出。對(duì)于電源噪聲,需要在封裝、PCB上使用去耦電容,設(shè)計(jì)合理的電源地平面,最終濾去電源噪聲。對(duì)于電源紋波,需要增大BULK電感或者BULK電容。
圖4 芯片電源分布網(wǎng)絡(luò)(PDN)示意圖
對(duì)于板級(jí)PCB設(shè)計(jì),當(dāng)頻率達(dá)到一定頻率后,由于走線的ESL、電容的ESL的影響,已經(jīng)無(wú)法濾去高頻噪聲,業(yè)界認(rèn)為PCB只能處理100MHz以內(nèi)的噪聲,更高頻率的噪聲需要封裝或者die來(lái)解決。因此對(duì)于板級(jí)電源噪聲測(cè)試,使用帶寬500M以上的示波器就足夠了。一般情況下,示波器的帶寬越大,低噪也會(huì)隨之上升,因此建議測(cè)試電源時(shí)示波器的帶寬限制為1GHz。
4.2 電源紋波和電源噪聲
電源紋波和電源噪聲是一個(gè)比較容易混淆的概念,如下圖5所示,藍(lán)色波形為電源紋波,紅色波形為電源噪聲。電源紋波的頻率為開(kāi)關(guān)頻率的基波和諧波,而噪聲的頻率成分高于紋波,是由板上芯片高速I/O的開(kāi)關(guān)切換產(chǎn)生的瞬態(tài)電流、供電網(wǎng)絡(luò)的寄生電感、電源平面和地平面之間的電磁輻射等諸多因素產(chǎn)生的。因此,在PMU側(cè)測(cè)量電源輸出為紋波,而在SINK端(耗電芯片端,如AP、EMMC、MODEM等)測(cè)量的是電源噪聲。
圖5 電源紋波噪聲圖
電源紋波測(cè)量時(shí),限制示波器帶寬為20MHz,測(cè)量PMU電源輸出的波形峰峰值即可電源紋波。由于PMU芯片在設(shè)計(jì)完成后,芯片廠商會(huì)做負(fù)載測(cè)試,測(cè)試PMU在不同負(fù)載時(shí)輸出電源的紋波情況,因此在終端類產(chǎn)品板上,沒(méi)必要在做這方面的測(cè)試,紋波大小參考PMU手冊(cè)即可。
電源噪聲測(cè)試時(shí),測(cè)試點(diǎn)放在SINK端,由于SINK端工作速度大都在幾十MHz以上,因此示波器帶寬設(shè)置為全頻段(最高為示波器帶寬上限),測(cè)試點(diǎn)要盡量靠近測(cè)試芯片的電源引腳,如果存在多個(gè)電源引腳,應(yīng)該選擇距離PMU最遠(yuǎn)端的那個(gè)引腳。電源噪聲跟PCB布局布線,DECAP電容的位置的位置相關(guān),同時(shí)電源噪聲影響CPU的工作狀態(tài)和單板的EMI,終端類產(chǎn)品板需要對(duì)每塊單板測(cè)試電源噪聲。
5常見(jiàn)的紋波噪聲測(cè)試方案
5.1 紋波噪聲測(cè)試基本要求
目前芯片的工作頻率越來(lái)越高,工作電壓越來(lái)越低,工作電流越來(lái)越大,噪聲要求也更加苛刻,以MSM8974的CORE核為例,電壓為0.9V,電流為3A,要求25MHz時(shí),交流PDN阻抗為22mohm,電源噪聲要求在±33mV以內(nèi)。對(duì)于DDR3芯片,要求VREF電源噪聲在±1%以內(nèi),若1.5V供電,則噪聲峰峰值不大于30mV。
這類低噪聲的電源測(cè)試非常具有挑戰(zhàn),影響其測(cè)量準(zhǔn)確性的主要有如下幾點(diǎn):
(1)示波器通道的底噪;
(2)示波器的分辨率(示波器的ADC位數(shù));
(3)示波器垂直刻度最小值(量化誤差);
(4)探頭帶寬;
(5)探頭GND和信號(hào)兩個(gè)測(cè)試點(diǎn)的距離;
(6)示波器通道的設(shè)置;
在測(cè)試電源噪聲時(shí),要求如下條件:
(1)需要在重負(fù)載情況下測(cè)試電源紋波;
(2)測(cè)試電源紋波時(shí)應(yīng)該將CPU、GPU、DDR頻率鎖定在最高頻;
(3)測(cè)試點(diǎn)應(yīng)該在SINK端距離PMU最遠(yuǎn)的位置;
(4)測(cè)試點(diǎn)應(yīng)該靠近芯片的BALL;
(5)帶寬設(shè)置為全頻段;
(6)示波器帶寬大于500MHz;
(7)噪聲波形占整個(gè)屏幕的2/3以上或者垂直刻度已經(jīng)為最小值;
(8)探頭地和信號(hào)之間的回路最短,電感最??;
(9)測(cè)試時(shí)間大于1min,采樣時(shí)間1ms以上,采樣率500Ms/s以上;
(10)紋波噪聲看Pk-Pk值,關(guān)注Max、Min值;
5.2 高通濾波器特性分析
示波器有AC和DC兩種耦合方式,當(dāng)采用AC耦合時(shí),其內(nèi)部等效電路如圖6所示,C為隔值電容,R為終端對(duì)地阻抗,Vi為輸入信號(hào),Vo為測(cè)量信號(hào),濾波器的截止頻率為
為信號(hào)頻率,則有:
圖6加隔值電容后高通濾波器等效電路
表3 不同隔值電容對(duì)應(yīng)的頻點(diǎn)
隔直電容容值(uF) |
50W截止頻率(KHz) |
50W-1%誤差頻點(diǎn)(KHz) |
50W截止頻率(Hz) |
1MW-1%誤差頻點(diǎn)(Hz) |
0.1 |
31.83 |
222.82 |
1.5915 |
11.14 |
0.47 |
6.77 |
47.41 |
0.3386 |
2.37 |
1 |
3.18 |
22.28 |
0.1592 |
1.11 |
2.2 |
1.45 |
10.13 |
0.0723 |
0.51 |
10 |
0.32 |
2.23 |
0.0159 |
0.11 |
5.3 無(wú)源探頭DC耦合測(cè)試
使用無(wú)源探頭DC耦合測(cè)試,示波器內(nèi)部設(shè)置為DC耦合,耦合阻抗為1Mohm,此時(shí)無(wú)源探頭的地線接主板地,信號(hào)線接待測(cè)電源信號(hào)。這種測(cè)量方法可以測(cè)到除DC以外的電源噪聲紋波。
如圖7所示,當(dāng)采用普通的鱷魚夾探頭時(shí),由于地和待測(cè)信號(hào)之間的環(huán)路太大,而探頭探測(cè)點(diǎn)靠近高速運(yùn)行的IC芯片,近場(chǎng)輻射較大,會(huì)有很多EMI噪聲輻射到探頭回路中,使測(cè)試的數(shù)據(jù)不準(zhǔn)確。為了改善這種情況,推薦用無(wú)源探頭測(cè)試紋波時(shí),使用右圖中的探頭,將地信號(hào)纏繞在信號(hào)引腳上,相當(dāng)于在地和信號(hào)之間存在一個(gè)環(huán)路電感,對(duì)高頻信號(hào)相當(dāng)于高阻,有效抑制由于輻射產(chǎn)生的高頻噪聲。更多時(shí)候,建議測(cè)試者采用第三種測(cè)試方法,將一個(gè)漆包線繞在探頭上,然后將漆包線的焊接到主板地網(wǎng)絡(luò)上,移動(dòng)探頭去測(cè)試每一路電源紋波噪聲。同時(shí)無(wú)源探頭要求盡量采用1:1的探頭,杜絕使用1:10的探頭。
圖7 無(wú)源探頭地線兩種處理方法
對(duì)于示波器,若垂直刻度為xV/div,示波器垂直方向?yàn)?0div,滿量程為10xV,示波器采樣AD為8位,則量化誤差為10x/256 V。例如一個(gè)1V電源,噪聲紋波為50mV,如果要顯示這個(gè)信號(hào),需要設(shè)置垂直刻度為200mV/div,此時(shí)量化誤差為7.8mV,如果把直流1V通過(guò)offset去掉,只顯示紋波噪聲信號(hào),垂直刻度設(shè)置為10mV即可,此時(shí)的量化誤差為0.4mV。
使用無(wú)源探頭DC耦合測(cè)試,示波器設(shè)置如下:
(1)1Mohm端接匹配;
(2)DC耦合;
(3)全帶寬;
(4)offset設(shè)置為電源電壓;
5.4 無(wú)源探頭AC耦合測(cè)試
使用無(wú)源探頭DC耦合需要設(shè)置offset,對(duì)于電源電壓不穩(wěn)定的情況,offset設(shè)置不合理,會(huì)導(dǎo)致屏幕上顯示的信號(hào)超出量程,此時(shí)選擇AC耦合,使用內(nèi)置的擱置電路來(lái)濾去直流分量。對(duì)于大多數(shù)的示波器,會(huì)有如下參數(shù),設(shè)置為AC耦合,此時(shí)測(cè)量的為10Hz以上的噪聲紋波。
圖8 示波器兩種耦合方式頻點(diǎn)
使用無(wú)源探頭AC耦合測(cè)試,設(shè)置如下:
(1)1Mohm端接匹配;
(2)AC耦合;
(3)全帶寬;
(4)offset設(shè)置為0
5.5 同軸線外部隔直電容DC50歐耦合測(cè)試
由于無(wú)源探頭的帶寬較低,而電源開(kāi)關(guān)噪聲一般都在百M(fèi)Hz以上,同時(shí)電源內(nèi)阻一般在幾百毫歐以內(nèi),選擇高阻1Mohm的無(wú)源探頭對(duì)于高頻會(huì)產(chǎn)生反射現(xiàn)象,因此可以選擇用同軸線來(lái)代替無(wú)源探頭,此時(shí)示波器端接阻抗設(shè)置為50歐,與同軸線阻抗相匹配,根據(jù)傳輸線理論,電源噪聲沒(méi)有反射,此時(shí)認(rèn)為測(cè)量結(jié)果最準(zhǔn)確。
利用同軸線的測(cè)量方法,最準(zhǔn)確的是采用DC50歐,但是大部分示波器在DC50歐時(shí)offset最大電壓為1V,無(wú)法滿足大部分電源的測(cè)量要求,而示波器內(nèi)部端接阻抗為50歐時(shí),不支持AC耦合,因此需要外置一個(gè)AC電容,如圖9所示,當(dāng)串聯(lián)電容值為10uF時(shí),根據(jù)表3可以看到,此時(shí)可以準(zhǔn)確測(cè)試到2KHz以上的紋波噪聲信號(hào)。
圖9 同軸線DC50測(cè)量圖
5.6 同軸線AC1M歐耦合測(cè)試
由于從PMU出來(lái)的電源紋波噪聲大多集中在1MHz以內(nèi),如果采用同軸線DC50外置隔直電容測(cè)量方法,低頻噪聲分量損失較為嚴(yán)重,因此改用圖10所示的測(cè)量方法,利用同軸線傳輸信號(hào),示波器設(shè)置為AC1M,這樣雖然存在反射,但是反射信號(hào)經(jīng)過(guò)較長(zhǎng)CABLE線折返傳輸后,影響是有限的,示波器在R2上采集電壓值可以認(rèn)為仍然可以被參考。
圖10 同軸線AC1M測(cè)量圖
為了避免反射,在同軸線接到示波器的接口處端接一個(gè)50ohm電阻,使示波器輸入阻抗和cable線特征阻抗匹配。
圖11 同軸線AC1M測(cè)量改進(jìn)圖
5.7 差分探頭外置電容DC耦合測(cè)試
由于示波器的探頭地和機(jī)殼地通過(guò)一個(gè)小電容接在一起,而示波器的機(jī)殼地又通過(guò)三角插頭和大地接在一起,在實(shí)驗(yàn)室里,幾乎所有的設(shè)備地都和大地接在一起,示波器內(nèi)部地線接法如圖12所示,因此上面介紹的兩種方法都無(wú)法解決地干擾問(wèn)題,為了解決這個(gè)問(wèn)題,需要引入浮地示波器或者差分探頭。
圖12示波器內(nèi)部地線接法
如圖13所示,為差分接法,由于差分探頭為有源探頭,外置差動(dòng)放大器,可以將待測(cè)信號(hào)通過(guò)差分方式接入,使示波器的地和待測(cè)件地隔離開(kāi),達(dá)到浮地效果。但是差分探頭在示波器內(nèi)部只能DC50歐耦合,而offset最大一般不超過(guò)1V,因此需要在差分探頭上串聯(lián)隔直電容。使用差分探頭測(cè)量時(shí)關(guān)鍵是探頭的CMRR要足夠大,這樣才能有效抑制共模噪聲
圖13差分探頭外置電容DC耦合接法示意圖
5.8 差分探頭衰減DC耦合測(cè)試
當(dāng)采用差分探頭外置電容DC耦合時(shí),同樣存在截止頻率的問(wèn)題,測(cè)量的結(jié)果會(huì)損失一些低頻分量,為了解決這個(gè)問(wèn)題,可以將差分探頭衰減10倍,示波器會(huì)將采集到的電壓值乘10顯示出來(lái),這個(gè)時(shí)候offset設(shè)置也會(huì)放大到10V,能夠滿足終端類產(chǎn)品的直流電壓偏置。
圖14 差分探頭衰減DC耦合測(cè)試接法示意圖
6電源模塊電壓測(cè)試
由于本模塊是POE電源,測(cè)試所使用的輸入電壓取自于網(wǎng)口,PSE供電模塊會(huì)和本模塊先進(jìn)行握手通信,PSE設(shè)備確定后面所接的是PD設(shè)備后,才給PD設(shè)備供電。如圖15所示為一個(gè)PoE SWITCH設(shè)備。
圖15 PoE SWITCH設(shè)備
如圖16所示為本模塊電路,電路長(zhǎng)大約6.2cm,寬大約2.65cm,高大約1.5cm。
圖16 POE電源模塊
由于給POE電源是通過(guò)網(wǎng)口供電的,本模塊沒(méi)有特別設(shè)計(jì)一個(gè)網(wǎng)絡(luò)端口來(lái)給供電,而是使用“硬件十萬(wàn)個(gè)為什么”提供的開(kāi)發(fā)板,此開(kāi)發(fā)板是用來(lái)給物聯(lián)網(wǎng)編程用的,屬于工業(yè)兼學(xué)習(xí)使用的一塊開(kāi)發(fā)板,可以使用開(kāi)發(fā)板來(lái)實(shí)現(xiàn)wifi、GPRS、藍(lán)牙、串口、LORA、POE等功能的使用,故直接選擇此塊開(kāi)發(fā)板來(lái)實(shí)現(xiàn)網(wǎng)絡(luò)端口供電。如圖17所示為網(wǎng)絡(luò)供電端口。
圖17 網(wǎng)絡(luò)端口供電模塊
6.1 輸入電壓測(cè)量
圖18所示為通過(guò)網(wǎng)絡(luò)端口過(guò)后在POE電源輸入端口測(cè)的電壓,此次所使用的示波器是鼎陽(yáng)牌SDS1000X-C數(shù)字示波器。
圖18 輸入電壓波形
輸入電壓也有一定的紋波,圖19所示就是輸入電壓的紋波,可以看出紋波還是比較小的,是可以接受的紋波范圍。
圖19 輸入電壓紋波測(cè)試
6.2 輸出電壓測(cè)量
本模塊輸出電壓應(yīng)該是5V輸出,但是由于很難把電壓一直穩(wěn)定在5V不變。
圖20所示就是輸出電壓測(cè)試,從萬(wàn)用表中看出,輸出電壓在5.1V。
圖20 輸出電壓測(cè)試
輸出電壓也是有紋波的,圖21所示就是輸出電壓的紋波測(cè)試圖。
圖21 輸出電壓紋波
從輸出紋波可以看出,此紋波在可接受范圍內(nèi)的。
7總結(jié)
本文檔簡(jiǎn)要介紹了POE電源的基礎(chǔ)知識(shí),以及整塊電路芯片以及元件選型,電路原理的介紹。電源紋波的產(chǎn)生以及測(cè)試方法的介紹,POE電源的測(cè)試設(shè)備介紹,以及輸入輸出電壓的測(cè)量等。
電源模塊具有高可靠性的特點(diǎn),目前已被廣泛應(yīng)用于通信、軍工、電力等領(lǐng)域。在應(yīng)用過(guò)程中,可能會(huì)遇到一些故障,輕則導(dǎo)致系統(tǒng)無(wú)法啟動(dòng),重則燒毀電路。當(dāng)電源模塊出現(xiàn)故障怎么排除呢?
輸入電壓過(guò)高
針對(duì)電源模輸入?yún)?shù)異常——輸入電壓過(guò)高。這中異常輕則導(dǎo)致系統(tǒng)無(wú)法正常工作,重則會(huì)燒毀電路。那么輸入電壓過(guò)高通常是那些原因造成的呢?
輸出端懸空或無(wú)負(fù)載;
輸出端負(fù)載過(guò)輕,輕于10%的額定負(fù)載;
輸入電壓偏高或干擾電壓。
針對(duì)這一類問(wèn)題,可以通過(guò)調(diào)整輸出端的負(fù)載或調(diào)整輸入電壓范圍,具體如下所示:
確保輸出端不小于少10%的額定負(fù)載,若實(shí)際電路工作中會(huì)有空載現(xiàn)象,就在輸出端并接一個(gè)額定功率10%的假負(fù)載;
更換一個(gè)合理范圍的輸入電壓,存在干擾電壓時(shí)要考慮在輸入端并上TVS管或穩(wěn)壓管。
輸出電壓過(guò)低
針對(duì)電源模輸出參數(shù)異?!敵鲭妷哼^(guò)低。這可能會(huì)導(dǎo)致整體系統(tǒng)不能正常工作,如微控制器系統(tǒng)中,負(fù)載突然增大,會(huì)拉低微控制器供電電壓,容易造成復(fù)位。并且電源長(zhǎng)時(shí)間工作在低輸入電壓情況下,電路的壽命也會(huì)出現(xiàn)極大的折損。因此輸出電壓偏低的問(wèn)題是不容忽視的,那么輸出電壓過(guò)低通常是那些原因造成的呢?
輸入電壓較低或功率不足; 輸出線路過(guò)長(zhǎng)或過(guò)細(xì),造成線損過(guò)大; 輸入端的防反接二極管壓降過(guò)大; 輸入濾波電感過(guò)大。針對(duì)這一類問(wèn)題,可以通過(guò)調(diào)整供電或者更換相應(yīng)的外圍電路來(lái)改善,具體如下所示:
調(diào)高電壓或換用更大功率輸入電源;
調(diào)整布線,增大導(dǎo)線截面積或縮短導(dǎo)線長(zhǎng)度,減小內(nèi)阻;
換用導(dǎo)通壓降小的二極管;
減小濾波電感值或降低電感的內(nèi)阻。
輸出噪聲過(guò)大
針對(duì)電源模輸出參數(shù)異?!敵黾y波噪聲過(guò)大。眾所周知,噪聲是衡量電源模塊優(yōu)劣的一大關(guān)鍵指標(biāo),在應(yīng)用電路中,模塊的設(shè)計(jì)布局等也會(huì)影響輸出噪聲,那么輸出紋波噪聲過(guò)大通常是那些原因造成的呢?
電源模塊與主電路噪聲敏感元件距離過(guò)近;
主電路噪聲敏感元件的電源輸入端處未接去耦電容;
多路系統(tǒng)中各單路輸出的電源模塊之間產(chǎn)生差頻干擾;
地線處理不合理。
針對(duì)這一類問(wèn)題,可以通過(guò)將模塊與噪聲器件隔離或在主電路使用去耦電容等方案改善,具體如下:
將電源模塊盡可能遠(yuǎn)離主電路噪聲敏感元件或模塊與主電路噪聲敏感元件進(jìn)行隔離;
主電路噪聲敏感元件(如:A/D、D/A或MCU等)的電源輸入端處接0.1μF去耦電容;
使用一個(gè)多路輸出的電源模塊代替多個(gè)單路輸出模塊消除差頻干擾;
采用遠(yuǎn)端一點(diǎn)接地、減小地線環(huán)路面積。
電源耐壓不良
針對(duì)電源模性能參數(shù)異?!娫茨K的耐壓不良。通常,隔離電源模塊的耐壓值高達(dá)幾千伏,但可能在應(yīng)用或測(cè)試過(guò)程中出現(xiàn)不能達(dá)到該指標(biāo)的情況,那么哪些因素會(huì)大大降低其耐壓能力呢?
耐壓測(cè)試儀存在開(kāi)機(jī)過(guò)沖;
選用模塊的隔離電壓值不夠;
維修中多次使用回流焊、熱風(fēng)槍。
針對(duì)這一類問(wèn)題,可通過(guò)規(guī)范測(cè)試和規(guī)范使用兩方面改善,具體如下所示:
耐壓測(cè)試時(shí)電壓逐步上調(diào);
選取耐壓值較高的電源模塊;
焊接電源模塊時(shí)要選取合適的溫度,避免反復(fù)焊接,損壞電源模塊。
【溫馨提醒】:選用優(yōu)質(zhì)的隔離電源模塊,降低電路的設(shè)計(jì)風(fēng)險(xiǎn)
設(shè)計(jì)簡(jiǎn)單。只需一個(gè)電源模塊,配上少量分立元件,即可獲得電源。
縮短開(kāi)發(fā)周期。模塊電源一般備有多種輸入、輸出選擇。用戶也可以重復(fù)迭加或交叉迭加,構(gòu)成積木式組合電源,實(shí)現(xiàn)多路輸入、輸出,大大削減了樣機(jī)開(kāi)發(fā)時(shí)間。
變更靈活。產(chǎn)品設(shè)計(jì)如需更改,只需轉(zhuǎn)換或并聯(lián)另一合適電源模塊即可。
技術(shù)要求低。模塊電源一般配備標(biāo)準(zhǔn)化前端、高集成電源模塊和其他元件,因此令電源設(shè)計(jì)更簡(jiǎn)單。
模塊電源外殼有集熱沉、散熱器和外殼三位一體的結(jié)構(gòu)形式,實(shí)現(xiàn)了模塊電源的傳導(dǎo)冷卻方式,使電源的溫度值趨近于最小值。同時(shí),又賦予了模塊電源金玉其表的包裝。
質(zhì)優(yōu)可靠。模塊電源一般均采用全自動(dòng)化生產(chǎn),并配以高科技生產(chǎn)技術(shù),因此品質(zhì)穩(wěn)定、可靠。
用途廣泛:模塊電源可廣泛應(yīng)用于航空航天、機(jī)車艦船、軍工兵器、發(fā)電配電、郵電通信、冶金礦山、自動(dòng)控制、家用電器、儀器儀表和科研實(shí)驗(yàn)等社會(huì)生產(chǎn)和生活的各個(gè)領(lǐng)域,尤其是在高可靠和高技術(shù)領(lǐng)域發(fā)揮著不可替代的重要作用。