中文名 | 標(biāo)準(zhǔn)氫電極 | 外文名 | Normal Hydrogen Electrode |
---|---|---|---|
外文別名 | Standard hydrogen electrode | 縮????寫 | NHE & SHE |
電極電勢(shì) | 0.000V(任意溫度) |
在選擇用于標(biāo)準(zhǔn)氫電極的鉑時(shí),應(yīng)考慮如下幾個(gè)因素:
鉑的活潑程度(越不活潑自然越不會(huì)被腐蝕);
催化氫氣變?yōu)闅潆x子的反應(yīng)的性能;
鉑固有的交換電流密度高低;
可逆性的高低(兩個(gè)完好的標(biāo)準(zhǔn)氫電極的電勢(shì)相差不超過(guò)10μV);
鉑表面是否有被鍍過(guò)(如鍍一層鉑黑)。這是為了:增大總的表面積。這會(huì)增大了反應(yīng)的性能,加快反應(yīng)速率;更好地吸附氫氣到表面上,同樣能夠加快反應(yīng)速率。
其他的金屬也能用作電極并起到相似的作用,例如鈀。
由于鉑電極有極高的吸附性,避免電極與溶液和有機(jī)物或是大氣中的氧氣接觸是很重要的。有氧化性的無(wú)機(jī)物(如Fe、CrO4等)同樣也要與電極隔離。
能夠沉積在鉑電極表面的陽(yáng)離子(這些離子會(huì)造成干擾):銀離子、汞離子、銅離子、鉛離子、鎘離子和鉈離子。
其他一些能使催化劑中毒的物質(zhì)包括:含硫和含砷的物質(zhì)、膠體、生物堿以及一些生物體中的物質(zhì)。
由于單個(gè)電極的電勢(shì)無(wú)法確定,故規(guī)定任何溫度下標(biāo)準(zhǔn)狀態(tài)的氫電極的電勢(shì)為零,任何電極的電勢(shì)就是該電極與標(biāo)準(zhǔn)氫電極所組成的電池的電勢(shì),這樣就得到了“氫標(biāo)”的電極勢(shì)。標(biāo)準(zhǔn)狀態(tài)是指氫電極的電解液中的氫離子活度為1,氫氣的壓強(qiáng)為0.1兆帕(約1大氣壓)的狀態(tài)(標(biāo)準(zhǔn)狀態(tài)時(shí)溫度為298.15K)。氫標(biāo)電極的溫度系數(shù)也因此為零。
實(shí)際測(cè)量時(shí)需用電勢(shì)已知的參比電極替代標(biāo)準(zhǔn)氫電極,如甘汞電極、氯化銀電極等。它們的電極勢(shì)是通過(guò)與氫電極組成無(wú)液體接界的電池,通過(guò)精確測(cè)量用外推去求得的。
樓上回答的都不對(duì)。氫電極只是標(biāo)準(zhǔn)電極,我們?nèi)藶榈陌阉碾娢欢椤?”,以此來(lái)比較出其它電極電位的大小。電化學(xué)科研中,常用的參比電極是甘汞電極,因?yàn)樗闹苽浔容^容易(簡(jiǎn)單)。25攝氏度下c的電極電位數(shù)據(jù)...
標(biāo)準(zhǔn)電極電勢(shì)的數(shù)值越大,它的氧化態(tài)的氧化性越強(qiáng),還原態(tài)的還原性越弱;標(biāo)準(zhǔn)電極電勢(shì)的數(shù)值越小,它的氧化態(tài)的氧化性越弱,還原態(tài)的還原性越強(qiáng);
電子或電器裝置、設(shè)備中的一種部件,用做導(dǎo)電介質(zhì)(固體、氣體、真空或電解質(zhì)溶液)中輸入或?qū)С鲭娏鞯膬蓚€(gè)端。輸入電流的一極叫陽(yáng)極或正極,放出電流的一極叫陰極或負(fù)極。電極有各種類型,如陰極、陽(yáng)極、焊接電極、...
在電化學(xué)發(fā)展的早期,研究人員曾使用一般氫電極作為零電位。這種電極的定義是“鉑電極浸在濃度為1M的一元強(qiáng)酸中,放出壓力約1atm的氫氣”??梢?jiàn)它能夠?qū)嶋H實(shí)現(xiàn),因而使用很方便。然而,這樣的電極-溶液界面并不完全可逆,所以后來(lái)零電位的定義有所改變——新的定義是一個(gè)氫離子的活度為1mol/L的理想電極-溶液界面(即假設(shè)氫離子與其他微粒沒(méi)有任何相互作用,顯然現(xiàn)實(shí)中無(wú)法實(shí)現(xiàn))。為了便于區(qū)分,這個(gè)新標(biāo)準(zhǔn)稱為“標(biāo)準(zhǔn)氫電極”。
一般氫電極(Normal Hydrogen Electrode,NHE):鉑電極在1M的強(qiáng)酸溶液中所構(gòu)成的電極(歷史標(biāo)準(zhǔn),現(xiàn)已棄用)。
標(biāo)準(zhǔn)氫電極(Standard Hydrogen Electrode,SHE):鉑電極在氫離子活度為1mol/L的理想溶液中所構(gòu)成的電極(當(dāng)前零電位的標(biāo)準(zhǔn))。
可逆氫電極(Reversible Hydrogen Electrode,RHE)是電化學(xué)會(huì)用于表示電極電位是標(biāo)準(zhǔn)的“零電位”,該詞出自JPCC的一篇文章(J. Phys. Chem. C, 2009, 113 (28), pp 12340–12344 題目:Surface Decoration at the Atomic Scale Using a Molecular Pattern: Copper Adsorption on Cyanide-Modified Pt(111) Electrodes) ?,F(xiàn)在電化學(xué)論文中更多的采用RHE校正自己體系的參考電極,作為相互比較的通用單位。一般每個(gè)電化學(xué)體系的RHE稍有不同,比較講究的文章中Supporting Information有詳細(xì)的測(cè)定方法。
比如這篇文章 《An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube-Nanographene Complexes》 的supporting information 一開(kāi)始就校正了電極電位,實(shí)驗(yàn)本身使用的SCE(飽和甘汞)電極。具體的方法不再贅述。
氘的電極反應(yīng)方程式如下:
2D(aq) 2e→ D2(g)
其電極電勢(shì)與氫的略有差異(約-0.013V,不同的文獻(xiàn)給出的數(shù)據(jù)各不相同,如也有-0.044V等說(shuō)法)。
如圖1為測(cè)量電極電勢(shì)的裝置,圖1中裝置用于測(cè)量某一工作電極的電極電勢(shì)。其中各數(shù)字代表含義如下:
鉑黑電極。
氫氣于此處噴出。
H活度為1mol/L的酸溶液。
水封,防止氧氣干擾實(shí)驗(yàn)。
連接到另一工作電極。可以直接連通,也可以使用鹽橋,選擇何者取決于另一電極的電解液。若減小管徑,可以減小混合的程度。
2100433B
格式:pdf
大?。?span id="8notvxd" class="single-tag-height">157KB
頁(yè)數(shù): 4頁(yè)
評(píng)分: 4.6
紫銅電極與石墨電極的區(qū)別 材料特性: 紫銅:以無(wú)雜質(zhì)鍛打的電解銅最好。 石墨:細(xì)粒致密,各向同性的高純石墨。 精加工: ? ?? ? 紫銅: 1、電極損耗小 ; 2、加工表面可達(dá)到 Ra≤0.1μm 適于鏡面加工; ? ?? ?? ?3 、 如果表面有紋,銅蝕出來(lái)的紋比較均勻。 石墨: 1、精加工電極損耗大。 粗加工: ? ?? ? 紫銅: 石墨: 1、開(kāi)粗速度快,透氣性好; 2、電極損耗小,適于加大型腔的加工。 材料利用率: ? ? 紫銅: 1、用過(guò)后經(jīng)改制還可以再次利用,利用率高。 石墨: 機(jī)械加工性能: 紫銅: 1、機(jī)加性能差,在精車精磨加工難,改進(jìn)方法:將紫銅焊在鋼基上; ? ?? ?? ?2 、易變形,磨削困難,不宜用作加工微細(xì)部位; 3、易成形 ?石墨: 1、機(jī)加性能好,易于成形及修正; ? ?? ?? ??2、做薄而深的骨位電極時(shí)不會(huì)變形,它很脆,寧可斷也不會(huì)變形;
格式:pdf
大?。?span id="fb63xac" class="single-tag-height">157KB
頁(yè)數(shù): 3頁(yè)
評(píng)分: 4.7
水位電極 一、水位電極的概述 Co-fly 系列電接點(diǎn)水位計(jì),主要用于鍋爐汽包、高低加熱器、除氧器、蒸發(fā)器、直流鍋爐起動(dòng)分離器、水箱 等的水位測(cè)量。本裝置由測(cè)量筒和二次儀表組成。采用數(shù)碼顯示和汽紅水綠雙色發(fā)光二極管顯示液位。 二、儀表的特點(diǎn)及技術(shù)參數(shù) 1.水位電極的特點(diǎn): ①具有閃光、聲音報(bào)警功能。 ②具有 4-20mA 信號(hào)輸出,可接 DCS 系統(tǒng),設(shè)有保護(hù)聯(lián)鎖輸出功能。 ③具有自供電功能,斷電后可繼續(xù)工作 4 小時(shí)。 ④儀表上設(shè)有三個(gè)按鈕, a報(bào)警消音、 b排污按鈕、 c檢測(cè)按鈕。 2.水位電極的技術(shù)參數(shù): ①電源電壓: 220V±10% 、50Hz ②工作環(huán)境溫度: -10-45℃ ③工作相對(duì)濕度:≤ 85% ④液體水阻范圍: 0-500KΩ ⑤繼電器輸出接點(diǎn)容量: 220V、3A ⑥水位顯示點(diǎn)數(shù): 5-19點(diǎn) (最多可達(dá) 38點(diǎn) ) 例如 19點(diǎn): 0、± 15、± 30、± 50
氫電極的結(jié)構(gòu)是:把鍍鉑黑的鉑(把電鍍法在鉑片的表面上鍍一層呈黑色的鉑微粒鉑黑)插入含有氫離子的溶液中,并不斷用氫氣沖打到鉑片上。在氫電極上所進(jìn)行的反應(yīng)為
在一定溫度下,如果氫氣在氣相中的分壓為p?(標(biāo)準(zhǔn)壓強(qiáng),即105Pa),且氫離子的活度等于1(即為1mol溶質(zhì)/1L溶劑。一般溶劑都用水,在濃度較低時(shí),活度近似等于濃度,所以也可以說(shuō)是標(biāo)準(zhǔn)濃度,其值為1mol/L),即mH =1mol·kg-1,γH =1,am,H =1,則這樣的氫電極就作為標(biāo)準(zhǔn)氫電極。
根據(jù)以上規(guī)定自然得出標(biāo)準(zhǔn)氫電極的電極電勢(shì)等于零。
實(shí)際測(cè)量時(shí)需用電勢(shì)已知的參比電極替代標(biāo)準(zhǔn)氫電極,如甘汞電極、氯化銀電極等。它們的電極勢(shì)是通過(guò)與氫電極組成無(wú)液體接界的電池,通過(guò)精確測(cè)量用外推去求得的。
析氫過(guò)電位主要與電極材料、電流密度、電解液組成和工作溫度等因素有關(guān)。由于電流密度、電解液組成和工作溫度等因素相對(duì)易于控制,因而選擇合適的電極材料及改性方法成為降低析氫過(guò)電位最有效的手段。在早期電解水電極材料中,以貴金屬Pt、Pd 及其氧化物為主。其具有不易氧化、析氫過(guò)電位低、電解穩(wěn)定性好等優(yōu)點(diǎn),但貴金屬價(jià)格昂貴不利于工業(yè)化大批量使用。因此,開(kāi)發(fā)能夠有效降低陰極析氫過(guò)電位的新型非貴金屬陰極材料成為研究熱點(diǎn)。
制備析氫電極材料的主要方法包括電沉積法、涂覆熱分解法、磁控濺射法、熱噴涂法、物理化學(xué)沉積法、金屬冶煉法、粉末冶金法等多種方法。在這些制備手段中,都不同程度地存在大規(guī)模生產(chǎn)和維護(hù)成本高、電極壽命和穩(wěn)定性低等問(wèn)題。相比于其他方法,電沉積法制備的析氫電極在具有良好催化活性、耐蝕能力及機(jī)械強(qiáng)度的同時(shí),加工及維護(hù)成本低,適用于工業(yè)大電流長(zhǎng)時(shí)間生產(chǎn)。而且,電沉積方法工藝成熟、操作簡(jiǎn)單。因此,電沉積法是制備析氫電極最貼近工業(yè)化的研究方向。
Ni 基電極主要有兩個(gè)發(fā)展方向:一是電極結(jié)晶結(jié)構(gòu)設(shè)計(jì),即主要通過(guò)合金化方式設(shè)計(jì)結(jié)晶結(jié)構(gòu),制備具有較快氫吸脫附能力的高催化活性和穩(wěn)定性的電極材料,從本質(zhì)上改善Ni 基固有催化活性;二是電極尺寸結(jié)構(gòu)設(shè)計(jì),即增大電極的表面粗糙度,有效降低析氫反應(yīng)電化學(xué)過(guò)程的真實(shí)電流密度,從而降低析氫過(guò)電位,并為析氫反應(yīng)提供更多的反應(yīng)活性中心。圍繞以上兩種主要因素,鎳基析氫電極種類得到了極大發(fā)展,主要包括合金析氫電極、復(fù)合析氫電極、多孔析氫電極3 類 。
電極材料研究經(jīng)歷了由單一金屬到多元合金轉(zhuǎn)變的過(guò)程。合金化的方式能夠最為直接有效的改變金屬Ni 的原子外層d 電子所處結(jié)構(gòu)狀態(tài),改善Ni 基合金電極與活性氫原子之間的鍵合強(qiáng)度,提升Ni 基材料的固有析氫活性。
作為最早的工業(yè)化合金析氫電極,Ni-S 合金電極得到了較為深入的研究。早期制備主要以硫代硫酸鹽作為硫源。隨著研究的不斷開(kāi)展,逐漸研制出了以硫脲、KSCN、NaSCN 等為硫源的Watt 型鍍液。通過(guò)改良的Watt 鍍液,以硫脲為硫源,在泡沫鎳上制備了多孔Ni-S 合金電極。經(jīng)測(cè)試,在80℃ 30% KOH 溶液中,當(dāng)電流密度為4kA/m2 時(shí)析氫過(guò)電位僅為160mV。
Ni-Mo 合金被認(rèn)為是鎳基二元合金中析氫活性最高的電極材料,有資料顯示其交換電流密度是純鎳的24 倍。然而,由于Mo 的溶出效應(yīng),間歇電解條件下,該合金的電化學(xué)穩(wěn)定性不夠理想,析氫反應(yīng)活性退化快,極大限制了工業(yè)化應(yīng)用。為了改善這一問(wèn)題,國(guó)內(nèi)外學(xué)者嘗試了多種工藝改進(jìn)方式。
采用脈沖電沉積法制備Ni-Mo 非晶合金,制備的含31% Mo 的析氫電極在200mA/cm2 電流密度下過(guò)電位僅為62mV,同時(shí)電極機(jī)械強(qiáng)度和耐蝕性能也得到改善。但是,長(zhǎng)時(shí)間電解對(duì)脈沖沉積的合金層同樣有破壞作用。對(duì)泡沫鎳表面進(jìn)行LaNiSi、TiNi 等儲(chǔ)氫合金修飾,然后再電沉積Ni-Mo 鍍層。得到的析氫電極在電流密度為0.2A/cm2 70℃ 30% KOH 中,析氫過(guò)電位僅為60mV。同時(shí),在電解間歇期間,利用吸附氫放電來(lái)降低Ni-Mo 電極中Mo 的溶解損失,顯著提高了穩(wěn)定性和抗氧化性。還有學(xué)者采用NiCoMnAl、TiO2等作為中間層貯存氫,以抵消反向電流的影響。當(dāng)往Ni-Mo 合金中添加第3 種元素時(shí),可以顯著改變電極的表面形貌和晶粒大小,進(jìn)而改善Ni-Mo 合金的穩(wěn)定性和電催化活性。通過(guò)正交實(shí)驗(yàn)確定了電鍍Ni-Mo-P 合金的最佳工藝:0.15mol/L 硫酸鎳、0.15mol/L 鉬酸銨、0.1mol/L 次亞磷酸鈉、鍍液溫度為 35℃、pH =9~10、電流密度0.1A/cm2。當(dāng)電流密度為0.1A/cm2 時(shí),Ni-Mo-P 合金的析氫電位比純Ni 電極正移約250mV,雖析氫電位相對(duì)于Ni-Mo 合金負(fù)移70mV,但提高了合金電極的耐蝕性,從而提升了合金電極的穩(wěn)定性。分別以鉬酸鈉和硫酸鈷為Mo 和Co 源,通過(guò)電沉積法制備Ni-Mo-Co 合金析氫電極。Mo 不能單獨(dú)從水溶液中沉積出來(lái),但能同鐵系元素(Fe,Co,Ni)進(jìn)行誘導(dǎo)共沉積,而Ni-Mo-Co 合金中Co 元素的添加增大了Mo 的誘導(dǎo)作用,提高了鍍層中Mo 的含量,使鍍層晶粒更小,呈現(xiàn)出納米晶結(jié)構(gòu)。對(duì)比其析氫活性發(fā)現(xiàn),Ni-Mo-Co 合金電極的交換電流密度是Ni-Mo電極的3 倍,純Ni 電極的6 倍。在60℃ 30%KOH 溶液中連續(xù)電解200 h,Ni-Mo-Co 合金電極槽電壓增幅僅為1.18%(Ni-Mo 電極槽壓增幅6.44%)。制備了非晶/納米晶Ni-Mo-Fe 合金電極,沉積層中含68% Ni、25% Mo、7% Fe。在30% KOH溶液中,其交換電流密度為4.8mA/cm2 下的析氫過(guò)電位為240mV。除此之外,相繼采用電沉積法制備了Ni-Cu、Ni-Co、Ni-W、Ni-Sn、Ni-Co-Sn等合金電極,在電催化性能和電解穩(wěn)定性方面都獲得了一定改善。
復(fù)合材料與材料間的簡(jiǎn)單混合存在著本質(zhì)差異,其一個(gè)非常重要的特點(diǎn)就是可以通過(guò)合理的材料設(shè)計(jì)使各復(fù)合組分間的性能得到優(yōu)勢(shì)互補(bǔ),同時(shí)又不會(huì)造成材料主要性能的嚴(yán)重缺失。在復(fù)合材料的制備手段中,復(fù)合電沉積適用于大電流長(zhǎng)時(shí)間生產(chǎn),加工維護(hù)成本低且操作簡(jiǎn)便,制備的表面鍍層具有結(jié)合力強(qiáng)、均勻性好等優(yōu)勢(shì),因而得到了廣泛應(yīng)用。
復(fù)合電極按加入的第二相粒子種類大致可分為無(wú)機(jī)顆粒復(fù)合電極、有機(jī)顆粒復(fù)合電極以及金屬粉末復(fù)合電極3 大類。
無(wú)機(jī)顆粒復(fù)合電極加入的第二相粒子主要包括Al2O3、TiO2、ZrO2、SiC 等惰性粒子,以及RuO2、LaNi5、CeO2 等活性粒子。通過(guò)在Ni-W鍍液中加入粒徑為20 nm 的ZrO2 粒子制備了Ni-W/ZrO2 納米復(fù)合電極。ZrO2 納米微粒的加入使復(fù)合鍍層的表面得到細(xì)化,真實(shí)表面積增大,30%NaOH 溶液中的表觀活化能為44.2 kJ/mol 。
制備了Ni/SiO2 復(fù)合電極,發(fā)現(xiàn)SiO2的加入增大了Ni 沉積過(guò)程的電化學(xué)傳荷阻抗,同時(shí)提高了鍍層的比表面積。隨著SiO2 加入量的增加,復(fù)合材料的硬度和耐蝕性均有所提高。在Ni/SiC 復(fù)合電極的制備過(guò)程中重點(diǎn)關(guān)注了第二相粒子尺寸對(duì)沉積行為的影響。其分別加入微米和納米SiC 顆粒,發(fā)現(xiàn)不同粒徑顆粒在鍍液中的Zeta 電位不同,微米SiC 的Zeta 電位更負(fù),尺度較大的顆粒更易進(jìn)入鍍層。與添加惰性粒子不同,活性第二相粒子往往在增加真實(shí)比表面積的同時(shí),還會(huì)與基體金屬產(chǎn)生協(xié)同析氫效應(yīng),更大程度提升析氫催化活性。
在Ni/RuO2 復(fù)合電極中,RuO2 可與Ni 基體形成協(xié)同效應(yīng),有利于增加析氫催化活性。同時(shí),RuO2的加入還能起到強(qiáng)化鍍層力學(xué)性能,提高真實(shí)表面積的作用。通過(guò)加入不同粒徑的CeO2 相繼制備了Ni/CeO2、Ni-S/CeO2、Ni-Zn/CeO2等復(fù)合析氫電極。發(fā)現(xiàn)相同添加濃度下,微米CeO2 復(fù)合鍍層的復(fù)合量要高于納米CeO2 復(fù)合鍍層,低復(fù)合量鍍層的耐蝕性高于鎳鍍層。微米CeO2 加入量為15 g/L 時(shí),Ni/CeO2 復(fù)合鍍層活性最高,析氫交換電流密度為純鎳層的70 倍;微米CeO2 加入量為10 g/L 時(shí),Ni-S/CeO2 復(fù)合鍍層的析氫性能最佳;納米CeO2 濃度為1 g/L 時(shí),Ni-Zn/CeO2 復(fù)合鍍層的析氫性能最佳。CeO2 出色的析氫催化活性主要源于Ce 元素具有空的d 軌道和f 軌道,有利于氫原子的吸附。
復(fù)合電極中第二相有機(jī)顆粒往往是指導(dǎo)電聚合物顆粒,其自20 世紀(jì)70 年代興起以來(lái),由于特殊的導(dǎo)電及催化性能而備受關(guān)注。研究了聚乙烯(PE)及聚噻吩(PTh)復(fù)合Ni-Mo 合金電極的催化性能。Ni-Mo/PE 復(fù)合電極的鍍液組成為0.035mol/L 鉬酸鈉、0.75mol/L 硫酸鎳、0.45mol/L檸檬酸鈉、10 g/L 聚乙烯粉末(需預(yù)鍍Ni)、溫度為25℃、pH=6~7。當(dāng)沉積電流密度為50mA/cm2時(shí),所得鍍層PE 含量最大,同時(shí)其催化活性也最高,交換電流密度達(dá)到1.15mA/cm2,較Ni-Mo 合金的催化性能提升了一個(gè)數(shù)量級(jí)。推測(cè)復(fù)合電極中嵌入的聚合物局部屏蔽了電極表面電化學(xué)過(guò)程的非活性位點(diǎn),從而提高了析氫反應(yīng)的動(dòng)力學(xué)過(guò)程。
Ni-Mo/PTh 電極的復(fù)合鍍液是將Ni-Mo 基礎(chǔ)鍍液與噻吩(Th)單體的高氯酸溶液按3∶1 混合配置而成,制備過(guò)程中電沉積與電聚合過(guò)程同時(shí)發(fā)生。較大沉積電流密度有利于鍍層中Th 復(fù)合含量的增加,制備出的NI-Mo/PTh 復(fù)合電極展現(xiàn)出粗糙的表面結(jié)構(gòu)。研究發(fā)現(xiàn),具有較低PTh 含量的電極析氫活性較高,其中含4.6% PTh 的復(fù)合電極的活性最佳,與Ni-Mo 電極相比,復(fù)合電極的交換電流密度提升了一倍。在鎳的電鍍液中加入粒徑為1~30μm 聚苯胺(PAni)顆粒,通過(guò)共沉積得到聚苯胺修飾鎳電極,考察了不同濃度PAni 顆粒對(duì)復(fù)合電極表面形貌及催化活性的影響,發(fā)現(xiàn)較高PAni 濃度有助于提高復(fù)合電極比表面積,同時(shí)降低析氫過(guò)程的電荷傳遞電阻(Rct)。
復(fù)合電極同樣可以加入金屬粉末作為第二相粒子。在鍍Ni 液中添加Ti、V、Mo 金屬顆粒,在碳鋼基體上分別制備出含14%~53% Ti 的Ni/Ti 電極、含6%~45% V 的Ni/V 電極以及含22%~56% Mo 的Ni/Mo 電極。通過(guò)研究不同顆粒添加量、沉積電流密度、溫度等因素對(duì)復(fù)合電極催化活性的影響,發(fā)現(xiàn)鍍層中顆粒含量隨鍍液中顆粒添加量的增加而提高,隨沉積電流密度的增大而減小,還發(fā)現(xiàn)含50% Mo 的Ni/Mo 復(fù)合電極析氫催化活性最強(qiáng)。其主要原因?yàn)榻饘兕w粒的添加使電極比表面積增加,同時(shí)Ni、Mo 間的協(xié)同效應(yīng)保證了其更為出色的析氫活性,這點(diǎn)也再次驗(yàn)證了Ni-Mo 合金電極出色的析氫活性 。
20 世紀(jì)20 年代,Raney 發(fā)現(xiàn)Ni-Al(Ni-Zn)合金在堿液中溶去Al(Zn)元素后形成的Raney-Ni因具有多孔及大比表面積而表現(xiàn)出良好的析氫催化活性。作為最經(jīng)典的多孔電極,Raney-Ni 電極一直在用。但在Raney-Ni 電極的制備過(guò)程中,需要高純度的Raney-Ni 合金作原料,以確保其高活性和穩(wěn)定性,有的還需要等離子設(shè)備及高溫高壓條件,使制備成本加大;另外,Raney-Ni 電極還存在抗逆電流能力弱,長(zhǎng)時(shí)間斷電情況下電極催化組分易溶出而導(dǎo)致電極活性降低等問(wèn)題。為此,近年來(lái)各國(guó)學(xué)者相繼開(kāi)展了多類有益的嘗試。多孔電極的主要制備方法包括類似Raney-Ni 電極的金屬溶出法,以及近些年發(fā)展起來(lái)的有機(jī)模板溶出法、無(wú)機(jī)模板溶出法、氣泡模板法等。
金屬溶出法的機(jī)理主要源自Raney-Ni 電極的制備方法,利用中性金屬A1 和Zn 能溶于堿性溶液留下空洞,從而制備多孔結(jié)構(gòu)電極。釆用電沉積技術(shù)在基體上制備Ni-Co-Zn 合金鍍層,然后將合金電極放入溫度為50℃ 6mol/LNaOH 溶液中浸泡48 h,用以溶出合金中的Zn,形成多孔Ni-Co 合金電極。其不僅提高了電極的比表面,而且引入了析氫活性較強(qiáng)的Co,大大提高了電極的析氫活性。利用含有Ni2 、Cu2 、Zn2 硫酸鹽的鍍液,采用電沉積法制備了Ni-Cu-Zn復(fù)合電極,然后在NaOH 溶液中持續(xù)浸泡,直到不再有氫氣泡產(chǎn)生,從而制備具有大比表面積的Ni-Cu 多孔電極。100mA/cm2 連續(xù)連續(xù)電解120h,表現(xiàn)出穩(wěn)定的電化學(xué)性能。先在Ni 電極上電沉積Zn,然后將電極放入400℃的管式爐中加熱4h,使基體Ni 與Zn 鍍層互熔,形成Ni-Zn 合金。隨后,將Ni-Zn 合金電極放入1mol/L KOH 溶液中,在合適的電位下將合金中的Zn 溶出,得到厚度為8μm,平均孔徑700nm 的多孔Ni 電極。
在有機(jī)模板溶出法方面,泡沫Ni 不僅廣泛用作析氫電極的陰極基體材料,還為多孔電極的制備提供了很多有益思路。以聚氨酯海綿為基體,在化學(xué)鍍導(dǎo)電化處理后電沉積Ni-Mo-Co 合金,然后置于600℃高溫管式爐中,燒結(jié)2h 以除去聚氨酯海綿基體,制備了三維多孔Ni-Mo-Co 合金電極,比表面積是市售泡沫鎳的6.14 倍。室溫下,在電流密度為100mA/cm2 的6mol/L KOH 中,多孔合金電極的析氫過(guò)電位僅為115mV。但是,此方法工藝過(guò)程復(fù)雜,步驟繁瑣,極大限制了工業(yè)化大面積生產(chǎn)。
以自制的粒徑為660nm 聚苯乙烯(PS)微球?yàn)槟0?,采用電化學(xué)自組裝法將PS 球均勻排列于鍍Ni 層的點(diǎn)陣中,然后利用乙酸乙酯將PS 微球模板從電極中溶出以制備多孔Ni 電極。此方法通過(guò)控制PS 微球粒徑,間接實(shí)現(xiàn)了多孔鎳電極表面多孔結(jié)構(gòu)的可控制備。制備的多孔Ni 電極在堿性溶液中表現(xiàn)出較高的析氫電化學(xué)活性,當(dāng)極化電位為?1.5V 時(shí),析氫電流密度可達(dá)到206mA/cm2。經(jīng)過(guò)120h 長(zhǎng)期電解,該電極析氫活性未表現(xiàn)出明顯的劣化現(xiàn)象。
為了簡(jiǎn)化模板沉積法,避免模板移除過(guò)程對(duì)電極結(jié)構(gòu)的影響,人們嘗試在高電流密度下電沉積合金,以動(dòng)態(tài)氣泡為模板制備多孔電極。在0.5A/cm2的大電流密度條件下,以氫氣泡為動(dòng)態(tài)模板,利用氣泡留下空位形成多孔Cu 結(jié)構(gòu)。然后,以多孔銅為模板電沉積Ni,最終獲得多孔Ni 電極。在30% KOH 溶液中進(jìn)行電解析氫實(shí)驗(yàn),發(fā)現(xiàn)三維多孔Ni 電極因大比表面積降低了析氛反應(yīng)真實(shí)交換電流密度,從而降低了析氫過(guò)電位。
除此以外,人們還研發(fā)出了另外一些新穎的多孔電極。在含有沸石顆粒的堿性鍍Ni 液中,通過(guò)電沉積制備了Ni/沸石復(fù)合電極。將復(fù)合電極置于1mol/L 硫酸中以溶出內(nèi)部沸石顆粒,從而得到多孔Ni 電極。在電極的粗糙表面發(fā)現(xiàn)很多沸石溶出后留下的孔道,這極大提升了電極的真實(shí)表面積,同時(shí)殘存的沸石顆粒還提升了電極固有析氫活性。
采用二次氧化法制備了氧化鋁,并以氧化鋁的多孔結(jié)構(gòu)為模板,采用電位沉積技術(shù)在氧化鋁表面組裝了直徑約100nm、長(zhǎng)度20μm 的Ni-W-P合金納米線陣列。電化學(xué)測(cè)試結(jié)果表明,Ni-W-P 合金納米線陣列電極的析氫電荷傳遞電阻減小,電流密度為10mA/cm2 時(shí),析氫過(guò)電位比 Ni-W-P 合金電極正移250mV 。
氫醌電極,也稱為醌氫醌電極,一種可逆氧化還原電極,電極式為C6H4O2 2H 2e-→C6H4(OH)2。氫醌在水溶液中溶解度小,易建立平衡,溶于水后按C6H4O2˙C6H4(OH)2=C6H4O2 C6H4(OH)2 分解,電極極電勢(shì)與氫離子濃度有關(guān),也是一種氫離子指示電極,可用于測(cè)定溶液的pH值。精確度較高pH值超過(guò)8.5時(shí)電勢(shì)不穩(wěn)定,不能用于堿性溶液。
氫醌電極電勢(shì)計(jì)算式為:E=E(標(biāo)準(zhǔn))-RT/F·ln(1/H ),其標(biāo)準(zhǔn)電極電勢(shì)為E(標(biāo)準(zhǔn))=0.6994-0.00074(t-25)?;?jiǎn)可得E=E(標(biāo)準(zhǔn))-2.303RT/F·pH。 2100433B