書????名 | 電子顯微鏡與電子光學(xué) | 作????者 | 黃蘭友、劉緒平 |
---|---|---|---|
ISBN | 7030024443 | 出版社 | 科學(xué)出版社 |
目錄
第一章 電子顯微鏡發(fā)展簡(jiǎn)史
第二章 電子光學(xué)基礎(chǔ)
第三章 常用磁透鏡的傍軸光學(xué)參數(shù)
第四章 磁透鏡的象差
第五章 強(qiáng)激勵(lì)透鏡和非對(duì)稱透鏡
第六章 透鏡磁路與線包的設(shè)計(jì)
第七章 電子槍
第八章 偏轉(zhuǎn)系統(tǒng)
第九章 照明系統(tǒng)和成象系統(tǒng)
第十章 象的觀察與記錄
第十一章 成象理論初步
第十二章 改善分辨本領(lǐng)的努力
第十三章 分析電子顯微鏡
第十四章 掃描透射電子顯微鏡
第十五章 全息法
參考文獻(xiàn)
附錄 商品電子顯微鏡發(fā)展簡(jiǎn)史
該書對(duì)各類透鏡,特別是一些新型透鏡的光學(xué)性能做了介紹,并重點(diǎn)闡述了分析電鏡、掃描電鏡、透射電鏡和全息法的新發(fā)展和應(yīng)用。
電子顯微鏡的分類 1、透射電鏡 (TEM) 樣品必須制成電子能穿透的,厚度為100~2000 ?的薄膜。成像方式與光學(xué)生物顯微鏡相似,只是以電子透鏡代替玻璃透鏡。放大后的電子像在熒光屏上顯示出來,TE...
電子顯微鏡是根據(jù)電子光學(xué)原理,用電子束和電子透鏡代替光束和光學(xué)透鏡,使物質(zhì)的細(xì)微結(jié)構(gòu)在非常高的放大倍數(shù)下成像的儀器。 電子顯微鏡的分辨能力以它所能分辨的相鄰兩點(diǎn)的最小間距來表示。20世紀(jì)70年代,透射...
顧名思義,所謂電子顯微鏡是以電子束為照明光源的顯微鏡。由于電子束在外部磁場(chǎng)或電場(chǎng)的作用下可以發(fā)生彎曲,形成類似于可見光通過玻璃時(shí)的折射現(xiàn)象,所以我們就可以利用這一物理效應(yīng)制造出電子束的“透鏡”,從而開...
格式:pdf
大?。?span id="h7qvtoe" class="single-tag-height">46KB
頁(yè)數(shù): 1頁(yè)
評(píng)分: 4.7
原子水平的表面特征傳感器—掃描式隧道電子顯微鏡(STM)
格式:pdf
大小:46KB
頁(yè)數(shù): 3頁(yè)
評(píng)分: 4.5
用掃描電子顯微鏡(SEM)對(duì)PS版鋁板基上的砂目形貌進(jìn)行了觀察分析,比較了不同砂目形貌對(duì)PS版性能的影響。實(shí)踐證明,SEM可以方便直觀地觀察鋁板基上砂目的細(xì)密程度、平臺(tái)和深度,為砂目的處理提供客觀可靠的依據(jù)。
電子顯微鏡種類
電子顯微鏡按結(jié)構(gòu)和用途可分為透射式電子顯微鏡、掃描式電子顯微鏡、反射式電子顯微鏡和發(fā)射式電子顯微鏡等。
透射式電子顯微鏡常用于觀察那些用普通顯微鏡所不能分辨的細(xì)微物質(zhì)結(jié)構(gòu);掃描式電子顯微鏡主要用于觀察固體表面的形貌,也能與X射線衍射儀或電子能譜儀相結(jié)合,構(gòu)成電子微探針,用于物質(zhì)成分分析;發(fā)射式電子顯微鏡用于自發(fā)射電子表面的研究。
因電子束穿透樣品后,再用電子透鏡成像放大而得名。它的光路與光學(xué)顯微鏡相仿,可以直接獲得一個(gè)樣本的投影。通過改變物鏡的透鏡系統(tǒng)人們可以直接放大物鏡的焦點(diǎn)的像。由此人們可以獲得電子衍射像。使用這個(gè)像可以分析樣本的晶體結(jié)構(gòu)。在這種電子顯微鏡中,圖像細(xì)節(jié)的對(duì)比度是由樣品的原子對(duì)電子束的散射形成的。由于電子需要穿過樣本,因此樣本必須非常薄。組成樣本的原子的原子量、加速電子的電壓和所希望獲得的分辨率決定樣本的厚度。樣本的厚度可以從數(shù)納米到數(shù)微米不等。原子量越高、電壓越低,樣本就必須越薄。樣品較薄或密度較低的部分,電子束散射較少,這樣就有較多的電子通過物鏡光欄,參與成像,在圖像中顯得較亮。反之,樣品中較厚或較密的部分,在圖像中則顯得較暗。如果樣品太厚或過密,則像的對(duì)比度就會(huì)惡化,甚至?xí)蛭针娮邮哪芰慷粨p傷或破壞。
透射電鏡的分辨率為0.1~0.2nm,放大倍數(shù)為幾萬~幾十萬倍。由于電子易散射或被物體吸收,故穿透力低,必須制備更薄的超薄切片(通常為50~100nm)。
透射式電子顯微鏡鏡筒的頂部是電子槍,電子由鎢絲熱陰極發(fā)射出、通過第一,第二兩個(gè)聚光鏡使電子束聚焦。電子束通過樣品后由物鏡成像于中間鏡上,再通過中間鏡和投影鏡逐級(jí)放大,成像于熒光屏或照相干版上。中間鏡主要通過對(duì)勵(lì)磁電流的調(diào)節(jié),放大倍數(shù)可從幾十倍連續(xù)地變化到幾十萬倍;改變中間鏡的焦距,即可在同一樣品的微小部位上得到電子顯微像和電子衍射圖像。
掃描電子顯微鏡的電子束不穿過樣品,僅以電子束盡量聚焦在樣本的一小塊地方,然后一行一行地掃描樣本。入射的電子導(dǎo)致樣本表面被激發(fā)出次級(jí)電子。顯微鏡觀察的是這些每個(gè)點(diǎn)散射出來的電子,放在樣品旁的閃爍晶體接收這些次級(jí)電子,通過放大后調(diào)制顯像管的電子束強(qiáng)度,從而改變顯像管熒光屏上的亮度。圖像為立體形象,反映了標(biāo)本的表面結(jié)構(gòu)。顯像管的偏轉(zhuǎn)線圈與樣品表面上的電子束保持同步掃描,這樣顯像管的熒光屏就顯示出樣品表面的形貌圖像,這與工業(yè)電視機(jī)的工作原理相類似。由于這樣的顯微鏡中電子不必透射樣本,因此其電子加速的電壓不必非常高。
掃描式電子顯微鏡的分辨率主要決定于樣品表面上電子束的直徑。放大倍數(shù)是顯像管上掃描幅度與樣品上掃描幅度之比,可從幾十倍連續(xù)地變化到幾十萬倍。掃描式電子顯微鏡不需要很薄的樣品;圖像有很強(qiáng)的立體感;能利用電子束與物質(zhì)相互作用而產(chǎn)生的次級(jí)電子、吸收電子和X射線等信息分析物質(zhì)成分。
掃描電子顯微鏡的制造是依據(jù)電子與物質(zhì)的相互作用。當(dāng)一束高能的入射電子轟擊物質(zhì)表面時(shí),被激發(fā)的區(qū)域?qū)a(chǎn)生二次電子、俄歇電子、特征x射線和連續(xù)譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區(qū)域產(chǎn)生的電磁輻射。同時(shí),也可產(chǎn)生電子-空穴對(duì)、晶格振動(dòng)(聲子)、電子振蕩(等離子體)。
1926年漢斯·布什研制了第一個(gè)磁力電子透鏡。
1931年厄恩斯特·盧斯卡和馬克斯·克諾爾研制了第一臺(tái)透視電子顯微鏡。展示這臺(tái)顯微鏡時(shí)使用的還不是透視的樣本,而是一個(gè)金屬格。1986年盧斯卡為此獲得諾貝爾物理獎(jiǎng)。
1934年鋨酸被提議用來加強(qiáng)圖像的對(duì)比度。
1937年第一臺(tái)掃描透射電子顯微鏡推出。一開始研制電子顯微鏡最主要的目的是顯示在光學(xué)顯微鏡中無法分辨的病原體如病毒等。
1938年他在西門子公司研制了第一臺(tái)商業(yè)電子顯微鏡。
1949年可透射的金屬薄片出現(xiàn)后材料學(xué)對(duì)電子顯微鏡的興趣大增。
1960年代透射電子顯微鏡的加速電壓越來越高來透視越來越厚的物質(zhì)。這個(gè)時(shí)期電子顯微鏡達(dá)到了可以分辨原子的能力。
1980年代人們能夠使用掃描電子顯微鏡觀察濕樣本。
1990年代中電腦越來越多地用來分析電子顯微鏡的圖像,同時(shí)使用電腦也可以控制越來越復(fù)雜的透鏡系統(tǒng),同時(shí)電子顯微鏡的操作越來越簡(jiǎn)單。
0304070201 /儀器儀表 /光學(xué)儀器 /電子光學(xué)及離子光學(xué)儀器 /掃描式電子顯微鏡
0304070202 /儀器儀表 /光學(xué)儀器 /電子光學(xué)及離子光學(xué)儀器 /臺(tái)式掃描電子顯微鏡