高溫電子顯微鏡是一種冶金的專業(yè)術(shù)語。
可以實(shí)現(xiàn)對(duì)溫度在1000°C下納米顆粒原子高溫行為的觀測(cè)。目前在HD-2300型上實(shí)驗(yàn),成功完成了對(duì)ZnS等顆粒的高溫行為測(cè)試。
電子顯微鏡的分類 1、透射電鏡 (TEM) 樣品必須制成電子能穿透的,厚度為100~2000 ?的薄膜。成像方式與光學(xué)生物顯微鏡相似,只是以電子透鏡代替玻璃透鏡。放大后的電子像在熒光屏上顯示出來,TE...
電子顯微鏡是根據(jù)電子光學(xué)原理,用電子束和電子透鏡代替光束和光學(xué)透鏡,使物質(zhì)的細(xì)微結(jié)構(gòu)在非常高的放大倍數(shù)下成像的儀器。 電子顯微鏡的分辨能力以它所能分辨的相鄰兩點(diǎn)的最小間距來表示。20世紀(jì)70年代,透射...
顧名思義,所謂電子顯微鏡是以電子束為照明光源的顯微鏡。由于電子束在外部磁場(chǎng)或電場(chǎng)的作用下可以發(fā)生彎曲,形成類似于可見光通過玻璃時(shí)的折射現(xiàn)象,所以我們就可以利用這一物理效應(yīng)制造出電子束的“透鏡”,從而開...
格式:pdf
大?。?span id="4h2tngj" class="single-tag-height">46KB
頁數(shù): 1頁
評(píng)分: 4.7
原子水平的表面特征傳感器—掃描式隧道電子顯微鏡(STM)
格式:pdf
大?。?span id="obp9hju" class="single-tag-height">46KB
頁數(shù): 3頁
評(píng)分: 4.5
用掃描電子顯微鏡(SEM)對(duì)PS版鋁板基上的砂目形貌進(jìn)行了觀察分析,比較了不同砂目形貌對(duì)PS版性能的影響。實(shí)踐證明,SEM可以方便直觀地觀察鋁板基上砂目的細(xì)密程度、平臺(tái)和深度,為砂目的處理提供客觀可靠的依據(jù)。
電子顯微鏡種類
電子顯微鏡按結(jié)構(gòu)和用途可分為透射式電子顯微鏡、掃描式電子顯微鏡、反射式電子顯微鏡和發(fā)射式電子顯微鏡等。
透射式電子顯微鏡常用于觀察那些用普通顯微鏡所不能分辨的細(xì)微物質(zhì)結(jié)構(gòu);掃描式電子顯微鏡主要用于觀察固體表面的形貌,也能與X射線衍射儀或電子能譜儀相結(jié)合,構(gòu)成電子微探針,用于物質(zhì)成分分析;發(fā)射式電子顯微鏡用于自發(fā)射電子表面的研究。
因電子束穿透樣品后,再用電子透鏡成像放大而得名。它的光路與光學(xué)顯微鏡相仿,可以直接獲得一個(gè)樣本的投影。通過改變物鏡的透鏡系統(tǒng)人們可以直接放大物鏡的焦點(diǎn)的像。由此人們可以獲得電子衍射像。使用這個(gè)像可以分析樣本的晶體結(jié)構(gòu)。在這種電子顯微鏡中,圖像細(xì)節(jié)的對(duì)比度是由樣品的原子對(duì)電子束的散射形成的。由于電子需要穿過樣本,因此樣本必須非常薄。組成樣本的原子的原子量、加速電子的電壓和所希望獲得的分辨率決定樣本的厚度。樣本的厚度可以從數(shù)納米到數(shù)微米不等。原子量越高、電壓越低,樣本就必須越薄。樣品較薄或密度較低的部分,電子束散射較少,這樣就有較多的電子通過物鏡光欄,參與成像,在圖像中顯得較亮。反之,樣品中較厚或較密的部分,在圖像中則顯得較暗。如果樣品太厚或過密,則像的對(duì)比度就會(huì)惡化,甚至?xí)蛭针娮邮哪芰慷粨p傷或破壞。
透射電鏡的分辨率為0.1~0.2nm,放大倍數(shù)為幾萬~幾十萬倍。由于電子易散射或被物體吸收,故穿透力低,必須制備更薄的超薄切片(通常為50~100nm)。
透射式電子顯微鏡鏡筒的頂部是電子槍,電子由鎢絲熱陰極發(fā)射出、通過第一,第二兩個(gè)聚光鏡使電子束聚焦。電子束通過樣品后由物鏡成像于中間鏡上,再通過中間鏡和投影鏡逐級(jí)放大,成像于熒光屏或照相干版上。中間鏡主要通過對(duì)勵(lì)磁電流的調(diào)節(jié),放大倍數(shù)可從幾十倍連續(xù)地變化到幾十萬倍;改變中間鏡的焦距,即可在同一樣品的微小部位上得到電子顯微像和電子衍射圖像。
掃描電子顯微鏡的電子束不穿過樣品,僅以電子束盡量聚焦在樣本的一小塊地方,然后一行一行地掃描樣本。入射的電子導(dǎo)致樣本表面被激發(fā)出次級(jí)電子。顯微鏡觀察的是這些每個(gè)點(diǎn)散射出來的電子,放在樣品旁的閃爍晶體接收這些次級(jí)電子,通過放大后調(diào)制顯像管的電子束強(qiáng)度,從而改變顯像管熒光屏上的亮度。圖像為立體形象,反映了標(biāo)本的表面結(jié)構(gòu)。顯像管的偏轉(zhuǎn)線圈與樣品表面上的電子束保持同步掃描,這樣顯像管的熒光屏就顯示出樣品表面的形貌圖像,這與工業(yè)電視機(jī)的工作原理相類似。由于這樣的顯微鏡中電子不必透射樣本,因此其電子加速的電壓不必非常高。
掃描式電子顯微鏡的分辨率主要決定于樣品表面上電子束的直徑。放大倍數(shù)是顯像管上掃描幅度與樣品上掃描幅度之比,可從幾十倍連續(xù)地變化到幾十萬倍。掃描式電子顯微鏡不需要很薄的樣品;圖像有很強(qiáng)的立體感;能利用電子束與物質(zhì)相互作用而產(chǎn)生的次級(jí)電子、吸收電子和X射線等信息分析物質(zhì)成分。
掃描電子顯微鏡的制造是依據(jù)電子與物質(zhì)的相互作用。當(dāng)一束高能的入射電子轟擊物質(zhì)表面時(shí),被激發(fā)的區(qū)域?qū)a(chǎn)生二次電子、俄歇電子、特征x射線和連續(xù)譜X射線、背散射電子、透射電子,以及在可見、紫外、紅外光區(qū)域產(chǎn)生的電磁輻射。同時(shí),也可產(chǎn)生電子-空穴對(duì)、晶格振動(dòng)(聲子)、電子振蕩(等離子體)。
1926年漢斯·布什研制了第一個(gè)磁力電子透鏡。
1931年厄恩斯特·盧斯卡和馬克斯·克諾爾研制了第一臺(tái)透視電子顯微鏡。展示這臺(tái)顯微鏡時(shí)使用的還不是透視的樣本,而是一個(gè)金屬格。1986年盧斯卡為此獲得諾貝爾物理獎(jiǎng)。
1934年鋨酸被提議用來加強(qiáng)圖像的對(duì)比度。
1937年第一臺(tái)掃描透射電子顯微鏡推出。一開始研制電子顯微鏡最主要的目的是顯示在光學(xué)顯微鏡中無法分辨的病原體如病毒等。
1938年他在西門子公司研制了第一臺(tái)商業(yè)電子顯微鏡。
1949年可透射的金屬薄片出現(xiàn)后材料學(xué)對(duì)電子顯微鏡的興趣大增。
1960年代透射電子顯微鏡的加速電壓越來越高來透視越來越厚的物質(zhì)。這個(gè)時(shí)期電子顯微鏡達(dá)到了可以分辨原子的能力。
1980年代人們能夠使用掃描電子顯微鏡觀察濕樣本。
1990年代中電腦越來越多地用來分析電子顯微鏡的圖像,同時(shí)使用電腦也可以控制越來越復(fù)雜的透鏡系統(tǒng),同時(shí)電子顯微鏡的操作越來越簡(jiǎn)單。
電子顯微鏡參數(shù)
分辨能力是電子顯微鏡的重要指標(biāo),電子顯微鏡的分辨能力以它所能分辨的相鄰兩點(diǎn)的最小間距來表示,即稱為該儀器的最高點(diǎn)分辨率:d=δ。顯然,分辨率越高,即d的數(shù)值(為長(zhǎng)度單位)愈小,則儀器所能分清被觀察物體的細(xì)節(jié)也就愈多愈豐富,也就是說這臺(tái)儀器的分辨能力或分辨本領(lǐng)越強(qiáng)。
分辨率與透過樣品的電子束入射錐角和波長(zhǎng)有關(guān)。可見光的波長(zhǎng)約為300~700納米,而電子束的波長(zhǎng)與加速電壓有關(guān)。依據(jù)波粒二象性原理,高速的電子的波長(zhǎng)比可見光的波長(zhǎng)短,而顯微鏡的分辨率受其使用的波長(zhǎng)的限制,因此電子顯微鏡的分辨率(0.2納米)遠(yuǎn)高于光學(xué)顯微鏡的分辨率(200納米)。當(dāng)加速電壓為50~100千伏時(shí),電子束波長(zhǎng)約為0.0053~0.0037納米。由于電子束的波長(zhǎng)遠(yuǎn)遠(yuǎn)小于可見光的波長(zhǎng),所以即使電子束的錐角僅為光學(xué)顯微鏡的1%,電子顯微鏡的分辨本領(lǐng)仍遠(yuǎn)遠(yuǎn)優(yōu)于光學(xué)顯微鏡。光學(xué)顯微鏡的最大放大倍率約為2000倍,而現(xiàn)代電子顯微鏡最大放大倍率超過300萬倍,所以通過電子顯微鏡就能直接觀察到某些重金屬的原子和晶體中排列整齊的原子點(diǎn)陣。
單就放大率(magnification)而言,是指被觀察物體經(jīng)電子顯微鏡放大后,在同一方向上像的長(zhǎng)度與物體實(shí)際長(zhǎng)度的比值。這是兩條直線的比值,有人將放大率理解為像與物的面積比,這是一種誤解,勢(shì)必引起概念上的混淆和計(jì)算方法與結(jié)果上的混亂。
以下列舉電鏡常見的應(yīng)用(截至1984年),其在對(duì)外貿(mào)易和軍事等其他領(lǐng)域也有其用武之地 。
分子和原子形態(tài)的研究;晶體薄膜位錯(cuò)和層錯(cuò)的研究;表面物理現(xiàn)象的研究等 。
高分子結(jié)構(gòu)和性能方面的研究;一些有機(jī)復(fù)合材料的結(jié)構(gòu)形態(tài)和添加劑的研究;催化劑的研究:各種無機(jī)物質(zhì)性能、結(jié)構(gòu)、雜質(zhì)含盤的研究;甚至對(duì)一些化學(xué)反應(yīng)過程的研究等 。
在分子生物學(xué)、分子遺傳學(xué)及遺傳工程方面的研究;昆蟲分類的研究:人工合成蛋白質(zhì)方面的研究以及對(duì)各種細(xì)菌;病毒、噬菌體等微生物的研究 。
癌癥發(fā)病機(jī)理的研究及早期診斷;藥理及病理學(xué)方面的研究;計(jì)劃生育和節(jié)育藥物的研究;對(duì)病毒及干擾素方面的研究以及臨床診斷等 。
電子顯微鏡技術(shù)在腫瘤診斷中的應(yīng)用
因此,透射電子顯微鏡突破了光學(xué)顯微鏡分辨率低的限制,成為了診斷疑難腫瘤的一種新的工具。有研究報(bào)道,無色素性腫瘤、嗜酸細(xì)胞瘤、肌原性腫瘤、軟組織腺泡狀肉瘤及神經(jīng)內(nèi)分泌腫瘤這些在光鏡很難明確診斷的腫瘤,利用電鏡可以明確診斷電鏡主要是通過對(duì)超微結(jié)構(gòu)的精細(xì)觀察,尋找組織細(xì)胞的分化標(biāo)記,確診和鑒別相應(yīng)的腫瘤類型。細(xì)胞凋亡與腫瘤有著密切的關(guān)系,電鏡對(duì)細(xì)胞凋亡的研究起著重要的作用,因此利用電鏡觀察細(xì)胞的超微結(jié)構(gòu)病理變化和細(xì)胞凋亡情況,將為腫瘤的診斷和治療提供科學(xué)依據(jù)。
電子顯微鏡技術(shù)在腫瘤鑒別診斷中的應(yīng)用
透射電子顯微鏡觀察的是組織細(xì)胞、生物大分子、病毒、細(xì)菌等結(jié)構(gòu),能夠觀察到不同病的病理結(jié)構(gòu),也可以鑒別一些腫瘤疾病,有研究報(bào)道電子顯微鏡技術(shù)通過超微結(jié)構(gòu)觀察可以區(qū)分癌、黑色素瘤和肉瘤以及腺癌和間皮瘤;可區(qū)別胸腺瘤、胸腺類癌、惡性淋巴瘤和生殖細(xì)胞瘤;可區(qū)別神經(jīng)母細(xì)胞瘤、胚胎性橫紋肌瘤、Ewing氏肉瘤、惡性淋巴瘤和小細(xì)胞癌;可區(qū)別纖維肉瘤、惡性纖維組織細(xì)胞瘤、平滑肌肉瘤和惡性神經(jīng)鞘瘤以及區(qū)別梭形細(xì)胞癌和癌肉瘤。
地層的研究、分析、識(shí)別:礦石的分析研究:化石、古尸、古瓷及各種出土文物的分析研究:文物古董的真?zhèn)舞b別等 。
精密合金的性能和工藝研究;鋼鐵材料斷口分析和夾雜物成分及分布的分析研究;耐高溫、高強(qiáng)度金屬材料及超導(dǎo)材料等的研究;金相分析等 。
各種半導(dǎo)體器件如超大規(guī)模集成電路等的失效分析和性能檢查;硅單晶等各種半導(dǎo)體材料性能的分析研究;各種開關(guān)、電位器.接插件的可靠性研究及耐久性分析;錄音磁帶.磁粉晶形的分析檢查等 。
熱處理工藝、焊接工藝、鑄造工藝等等的研究;破損機(jī)件的斷口分析等 。
油田巖芯的研究分析:石油制品性能結(jié)構(gòu)的研究和成分分析;催化劑的研究等等 。
羊毛纖維、紙張和糧食等的質(zhì)量評(píng)定;畬成纖維性能的研究:感光膠片的乳劑的研究等等 。
各種陶瓷、玻璃、云母、石墨、人造金剛石及新型建筑材料的性能結(jié)構(gòu)和工藝研究和成分分析 。
放射性同位素以及反應(yīng)堆所用特殊材料的研究分析 。
航空和宇航特種材料的研究:高空生理和太空生理的研究;宇宙物質(zhì)的研究分析等 。
由于植物病毒引起的糧食、果樹、煙草等作物的病害的防治研究;家畜、家禽、戰(zhàn)馬等發(fā)生癌病的動(dòng)物病毒的研究;雜交優(yōu)勢(shì)以及誘發(fā)突變的研究 。
刑事案件中對(duì)尸體、假幣、鎖鑰。兇器及各種作案工具的判別與分析,為破案提供充分的證據(jù) 。
大氣或水中的固體粉塵、微粒的分析研究和粒度測(cè)定等 。