書????名 | 有機(jī)薄膜的表征 | 作????者 | Abraham Ulman |
---|---|---|---|
出版時間 | 2014年01月 | 頁????數(shù) | 296 頁 |
定????價 | 98 元 | 開????本 | 16 開 |
ISBN | 978-7-5603-4287-0 |
Preface to the Reissue of the Materials Characterization Series
Preface to Series
Preface to the Reissue of Characterization of Organic Thin Films
Preface
Contributors
PART Ⅰ: PREPARATION AND MATERIALS LANGMUIR—BLODGETT FILMS
1.1 Introduction
1.2 L—B Films ofLong—Chain Compounds
FattyAcids
Amines
Other Long—Chain Compounds
1.3 Cyclic Compounds and Chromophores
1.4 Polymers and Proteins
1.5 Polymerization In Situ
1.6 Alternation Films (Superlattices)
1.7 PotentiaIApplications
SELF—ASSEMBLED MONOIAYERS
2.1 Introduction
2.2 Monolayers of Fatty Acids
2.3 Monolayers of Organosilicon Derivatives
2.4 Monolayers of Alkanethiolates on Metal and Semiconductor Surfaces
2.5 Self—Assembled Monolayers Containing Aromatic Groups
2.6 Conclusions
PARTⅡ: ANALYSIS OF FILM AND SURFACEPROPERTIES
SPECTROSCOPIC ELLIPSOMETRY
3.1 Introduction and Overview
3.2 Theory of Ellipsometry
3.3 Instrumentation
3.4 Determination of Optical Properties
Analysis of Single Eliipsometric Spectra: Direct Inversion Methods
Analysis of Single Ellipsometric Spectra: Least— Squares Regression Analysis Method
Analysis of Multiple Ellipsometric Spectra
3.5 Determination of Thin Film Structure
Thickness Determination for Monolayers
Microstructural Evolution in Thick Film Growth
3.6 Future Prospects
INFRARED SPECTROSCOPYIN THE CHARACTERIZATION OF ORGANIC THIN FILMS
4.1 Introduction
Specific Needs for Characterizing Organic Thin Films
General Prinaples and Capabilities of Infrared Spectroscopy for Surface and Thin Film Analysis
4.2 Quantitative Aspects
Spectroscopiclntensities
Electromagnetic Fields in Thin Film Structures
4.3 The Infrared Spectroscopic Experiment
General Instrumentation
Experimental Modes
Additional Aspects
4.4 Examples of Applications
Self—Assembled Monolayers on Gold by External Reflection
Octadecylsiloxane Monolayers on SiO2 byTransmission
Langmuir—Blodgett Films on Nonmetallic Substrates by External Reflection
RAMAN SPECTROSCOPIC CHARACTERIZATION OF ORGANIC THIN FILMS
5.1 Introduction
5.2 FundamentalsofRaman Spectroscopy
5.3 InstrumentaIConsiderations
5.4 Raman Spectroscopic Approaches for the Characterization ofOrganicThin Films
Integrated OpticaIWaveguide Raman Spectroscopy (IOWRS)
Total Internal Reflection Raman Spectroscopy
Surface Enhanced Raman Scattering
Normal Raman Spectroscopy
Resonance Raman Spectroscopy
Plasmon Surface Polariton Enhanced Raman Spectroscopy
FourierTransform Raman Spectroscopy
Waveguide Surface Coherent Anti—Stokes Raman Spectroscopy(WSCARS)
5.5 Selected Examples of Thin Film Analyses
Raman Spectral Characterization of Langmuir—Blodgett Layers of Arachidate and Stearate Salts
Raman Spectral Characterization of Self—Assembled Monolayers of Alkanethiols on Metals
Surface Enhanced Resonance Raman Spectral Characterization of Langmuir—Blodgett Layers of Phthalocyanines
5.6 Prospects for Raman Spectroscopic Characterization of Thin Films
SURFACE POTENTIAL
6.1 Introduction
6.2 Origins of the Contact Potential Difference and Surface Potential
The Work Function
Contact Potential Difference and Surface Potential
Surface Potential Changes Induced by Adsorbates
6.3 Measurement of Surface Potential
CapacitanceTechniques
Ionizing—ProbeTechnique
6.4 Surface Potentials of OrganicThin Films
Air—Water Interface: Surface Potential of Langmuir Mono— layers
Air—Solidlnterface: Surface Potential of L—B and Related Films
6.5 Conclusions
X—RAY DIFFRACTION
7.1 Introduction
7.2 Basic Principles
7.3 StructureNormalto Film Plane
7.4 Structure Within the Film Plane
7.5 Summary
HIGH RESOLUTION EELS STUDIES OF ORGANIC THIN FILMS AND SURFACES
8.1 Introduction
8.2 TheScatteringMechanism
DipoleScattering
Impact Scattering
Resonance Scattering
8.3 TheSpectrometer
8.4 EELS Versus Other Techniques: Advantages and Disadvantages
8.5 Examples
ResolutionEnhancement
Linearity
Depth Sensitivity
Molecular Orientation
Local Versus Long—Range lnteractions
SurfaceS egregation
8.6 Conclusions
WETTING
9.1 Introduction
9.2 ContactAngles
9.3 Techniques for Contact Angle Measurements
Axisymmetric Drop ShapeAnalysis—Profile (ADSA—P)
Axisymmetric Drop Shape Analysis—Contact Diameter (ADSA—CD)
Capillary Rise Technique
9.4 Phase Rule for Moderately Curved Surface Systems
9.5 Equation of State forInterfacialTensions of Solid— Liquid Systems
9.6 Drop Size Dependence of Contact Angle and Line Tension
9.7 Contact Angles in the Presence ofa Thin Liquid Film
9.8 Effects ofElastic Liquid—Vaporlnterfaces on Wetting
SECONDARY ION MASS SPECTROMETRY AS APPLIED TO THIN ORGANIC AND POLYMERIC FILMS
10.1 Introduction and Background
Overview of the SIMS Method and Experiment
Ion FormationMechanisms
Comparisons to Other Surface Analysis Techniques
The Motivation for Thin Organic Films as Model Systems
10.2 Qualitative Information: Mechanisms ofSecondary Molecularlon Formation
Structure—Ion Formation Relationships
Applications to Self—Assembled Film Chemistry
10.3 The Study ofSampling Depth in the SIMS Experiment
10.4 Quantitationin SIMS
Development of Quantitation Methods
Applicationof Quantitative Schemes to Thin Film Chemistry
10.5 ImagingApplications
10.6 Summary and Prospects
X—RAY PHOTOELECTRON SPECTROSCOPY OF ORGANIC THIN FILMS
11.1 Introduction
11.2 Experimental Considerations
11.3 Binding Energy Shifts
11.4 XPS of Molten Films
11.5 Angular Dependent XPS
11.6 ETOAXPS of Self—Assembled Monolayers
11.7 Conclusions
MOLECUlAR ORIENTATION IN THIN FILMS AS PROBED BY OPTICAL SECOND HARMONIC GENERATION
12.1 Introduction
12.2 Experimental Considerations
12.3 Molecular Nonlinear Polarizabiliry Calculation
12.4 Measurements of the Surface Nonlinear Susceptibility
12.5 Molecular Orientation Calculation
Casel:βzzzonly
Case2:βzxxonly
Case3: βxxz(=βxzx)only
Case4:βzzz and βzxx
Case5: βzxx and βxxz(=βxzx)
12.6 Absolute Molecular Orientation Measurements
12.7 Summary and Conclusions
APPENDIX: TECHNIQUE SUMMARIES
I Auger Electron Spectroscopy(AES)
2 DynamicSecondarylon Mass Spectrometry (DynamicSIMS) 252
3 FourierTransformlnfraredSpectroscopy(FTIR) 253
4 High—Resolution Electron Energy Loss Spectroscopy (HREELS)
5 Low—Energy Electron Diffraction(LEED)
6 Raman Spectroscopy
7 Scanning Electron Microscopy(SEM)
8 Scanning Tunneling Microscopy(STM) and Scanning Force Microscopy (SFM)
9 Static Secondarylon Mass Spectrometry (Static SIMS)
10 Transmission Electron Microscopy(TEM)
11 Variable—Angle Spectroscopic Ellipsometry(VASE)
12 X—Ray Diffraction XRD)
13 X—Ray Fluorescence(XRF)
14 X—Ray Photoelectron Spectroscopy(XPS)
Index 2100433B
相關(guān)領(lǐng)域的教學(xué)、研究、技術(shù)人員以及研究生和高年級本科生參考書。
路面表面抗滑性能表征指標(biāo)有哪些?各自表征的意義是什么?
?對于路基及路面基層,壓實度是指工地實際達(dá)到的干密度與室內(nèi)標(biāo)準(zhǔn)擊實實驗所得的最大干密度的比值;對瀝青路面壓實度是指現(xiàn)場實際達(dá)到的密度與室內(nèi)標(biāo)準(zhǔn)密度的比值。
切斷的地方會凸出來?進(jìn)刀太快,冷卻不到位,角度不對都可以導(dǎo)致。薄膜最好還是分條。
醫(yī)用材料中,PU薄膜、PE薄膜、PET薄膜和PVC薄膜有什么區(qū)別?
PVC、PU都是聚氯乙烯(塑料中的一種),但這兩種產(chǎn)品的制造工藝卻不盡相同。 PE是聚乙烯熱塑性基材,有高密度、低密度之分,薄膜制造工藝也有較大差異。PET是滌綸基材,制造薄膜的設(shè)備和工藝和PVC 、...
格式:pdf
大?。?span id="fjlxu5n" class="single-tag-height">1.1MB
頁數(shù): 4頁
評分: 4.6
以鎂(Mg)為可燃物質(zhì),聚四氟乙烯(PTFE)為氧化劑,利用磁控濺射和真空蒸鍍兩種方法,制備薄膜煙火器件,研究兩種制膜工藝在性能上的差異,并對其附著力、薄膜粒度和燃速進(jìn)行了測量。結(jié)果表明,磁控濺射制得的薄膜附著力為35.88mN,粒度為0.1~0.5μm,燃速為(623.9±12.5)mm.s-1,其主要性能優(yōu)于真空蒸鍍法制得的薄膜。
格式:pdf
大小:1.1MB
頁數(shù): 4頁
評分: 4.4
該文利用自組裝技術(shù),在HNO3(質(zhì)量分?jǐn)?shù)6.5%)刻蝕的銅表面制備了(3-巰基丙基)三甲氧基硅烷(MPTS)與正辛基三乙氧基硅烷(OS)的復(fù)合納米薄膜,并通過紅外光譜對膜結(jié)構(gòu)進(jìn)行了分析。通過掃描電子顯微鏡確定了該復(fù)合膜具有納米-微米級粗糙結(jié)構(gòu);靜態(tài)接觸角達(dá)158.6°,滾動角為3°,表明該膜具有超疏水性能;鹽水實驗證明該復(fù)合膜有效地提高了銅的耐腐蝕能力。
可測定多層薄膜和基片的折射率、吸收系數(shù)和厚度,可全自動、可同時測定透過光譜和反射光譜,入射光角度可從0°到90°連續(xù)改變。 2100433B
主要用于評價薄膜等材料在不同的溫度范圍下吸附性能的評價工作,可實現(xiàn)PRR\TPO\TPD,靜態(tài)化學(xué)吸附,物理吸附等實驗?zāi)軌蛱峁└哔|(zhì)量的比表面、孔隙度和化學(xué)吸附等溫線數(shù)據(jù).。 2100433B
光譜分辨率:1nm或2nm (可選);光源:150W 氙弧燈;樣品尺寸:10×10mm到200×250mm;層數(shù):至多5層,兩個未知參數(shù);薄膜厚度范圍:1nm到25um,取決于角度、偏振和波長。