每個粗同軸電纜網(wǎng)段都必須用50Ω系列終端匹配器連接,每個網(wǎng)段還必須有一個終端匹配器。
每個粗同軸電纜網(wǎng)段都必須用50Ω系列終端匹配器連接,每個網(wǎng)段還必須有一個終端匹配器。每個細同軸電纜網(wǎng)段的兩端都有必須有一個50Ω的BNC終端匹配器,直接連接于BNC T型接頭用于連接BNC連接器的兩端中的一端,然后再把匹配器的地線接觸片與地線連接即可。如圖1所示。終端匹配器使用四針連接器。他的內(nèi)部電源和通訊信號的端子定義有: 24V、GN外接地、Data 、Data-2100433B
阻抗匹配器:是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。
這個問題不難。按照ISO 11898規(guī)范,為了增強CAN-bus 通訊的可靠性,CAN-bus 總線網(wǎng)絡(luò)的兩個端點通常要加入終端匹配電阻(120Ω)。終端匹配電阻的大小由傳輸電纜的特性阻抗所決定,例如...
抑制回波干擾 高頻信號傳輸時,信號波長相對傳輸線較短,信號在傳輸線終端會形成反射波,干擾原信號,所以需要在傳輸線末端加終端電阻,使信號到達傳輸線末端后不反射。對于低頻信號則不用。在長線信號傳輸時,...
由上可知當“訊號”在傳輸線中飛馳旅行而到達終點,欲進入接受元件(如CPU或Meomery等大小不同的IC)中工作時,則該訊號線本身所具備的“特性阻抗”,必須要與終端元件內(nèi)部的電子阻抗相互匹配才行,如此才不致任務失敗白忙一場。用術(shù)語說就是正確執(zhí)行指令,減少雜訊干擾,避免錯誤動作”。一旦彼此未能匹配時,則必將會有少許能量回頭朝向“發(fā)送端”反彈,進而形成反射雜訊(Noise)的煩惱。
當傳輸線本身的特性阻抗(Z0)被設(shè)計者訂定為28ohm時,則終端控管的接地的電阻器(Zt)也必須是28ohm,如此才能協(xié)助傳輸線對Z0的保持,使整體得以穩(wěn)定在28 ohm的設(shè)計數(shù)值。也唯有在此種Z0=Zt的匹配情形下,訊號的傳輸才會最具效率,其“訊號完整性”(Signal Integrity,為訊號品質(zhì)之專用術(shù)語)也才最好。
把電容或電感與負載串聯(lián)起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?
由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調(diào)整為零,完成匹配。
阻抗匹配則傳輸功率大,對于一個電源來講,單它的內(nèi)阻等于負載時,輸出功率最大,此時阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。
數(shù)位系統(tǒng)之多層板訊號線(Signal Line)中,當出現(xiàn)方波訊號的傳輸時,可將之假想成為軟管(hose)送水澆花。一端于手握處加壓使其射出水柱,另一端接在水龍頭。當握管處所施壓的力道恰好,而讓水柱的射程正確灑落在目標區(qū)時,則施與受兩者皆歡而順利完成使命,豈非一種得心應手的小小成就?
然而一旦用力過度水注射程太遠,不但騰空越過目標浪費水資源,甚至還可能因強力水壓無處宣泄,以致往來源反彈造成軟管自龍頭上的掙脫!不僅任務失敗橫生挫折,而且還大捅紕漏滿臉豆花呢!
反之,當握處之擠壓不足以致射程太近者,則照樣得不到想要的結(jié)果。過猶不及皆非所欲,唯有恰到好處才能正中下懷皆大歡喜。
上述簡單的生活細節(jié),正可用以說明方波(Square Wave)訊號(Signal)在多層板傳輸線(Transmission Line,系由訊號線、介質(zhì)層、及接地層三者所共同組成)中所進行的快速傳送。此時可將傳輸線(常見者有同軸電纜Coaxial Cable,與微帶線Microstrip Line或帶線Strip Line等)看成軟管,而握管處所施加的壓力,就好比板面上“接受端”(Receiver)元件所并聯(lián)到Gnd的電阻器一般,可用以調(diào)節(jié)其終點的特性阻抗(Characteristic Impedance),使匹配接受端元件內(nèi)部的需求。
當某訊號方波,在傳輸線組合體的訊號線中,以高準位(High Level)的正壓訊號向前推進時,則距其最近的參考層(如接地層)中,理論上必有被該電場所感應出來的負壓訊號伴隨前行(等于正壓訊號反向的回歸路徑Return Path),如此將可完成整體性的回路(Loop)系統(tǒng)。該“訊號”前行中若將其飛行時間暫短加以凍結(jié),即可想象其所遭受到來自訊號線、介質(zhì)層與參考層等所共同呈現(xiàn)的瞬間阻抗值(Instantanious Impedance),此即所謂的“特性阻抗”。 是故該“特性阻抗”應與訊號線之線寬(w)、線厚(t)、介質(zhì)厚度(h)與介質(zhì)常數(shù)(Dk)都扯上了關(guān)系。
由于高頻訊號的“特性阻抗”(Z0)原詞甚長,故一般均簡稱之為“阻抗”。讀者千萬要小心,此與低頻AC交流電(60Hz)其電線(并非傳輸線)中,所出現(xiàn)的阻抗值(Z)并不完全相同。數(shù)位系統(tǒng)當整條傳輸線的Z0都能管理妥善,而控制在某一范圍內(nèi)(±10%或 ±5%)者,此品質(zhì)良好的傳輸線,將可使得雜訊減少,而誤動作也可避免。 但當上述微帶線中Z0的四種變數(shù)(w、t、h、 r)有任一項發(fā)生異常,例如訊號線出現(xiàn)缺口時,將使得原來的Z0突然上升(見上述公式中之Z0與W成反比的事實),而無法繼續(xù)維持應有的穩(wěn)定均勻(Continuous)時,則其訊號的能量必然會發(fā)生部分前進,而部分卻反彈反射的缺失。如此將無法避免雜訊及誤動作了。例如澆花的軟管突然被踩住,造成軟管兩端都出現(xiàn)異常,正好可說明上述特性阻抗匹配不良的問題。
上述部分訊號能量的反彈,將造成原來良好品質(zhì)的方波訊號,立即出現(xiàn)異常的變形(即發(fā)生高準位向上的Overshoot,與低準位向下的Undershoot,以及二者后續(xù)的Ringing)。此等高頻雜訊嚴重時還會引發(fā)誤動作,而且當時脈速度愈快時雜訊愈多也愈容易出錯。