基于最小二乘法的河道流量演算參數(shù)估計
格式:pdf
大?。?span id="aowo84i" class="single-tag-height" data-v-09d85783>222KB
頁數(shù):3P
人氣 :81
4.7
應用最小二乘法對馬斯京根流量演算方程的流量比重因素和河段傳播時間進行了求解,并與試算法進行了對比,結(jié)果表明:整體來講,使用最小二乘法所獲得的下斷面流量過程更接近觀測的流量過程;從局部來看,最小二乘法能很好地模擬上升段和流量峰值,而試算法對下降段的模擬效果更好;使用最小二乘法計算得到的流量過程線誤差比試算法低11%,說明應用最小二乘法確實能提高馬斯京根法的流量演算精度。
等流量柱塞泵凸輪輪廓的最小二乘法數(shù)控編程
格式:pdf
大小:607KB
頁數(shù):3P
針對等流量柱塞泵凸輪輪廓運動規(guī)律復雜、加工編程要求高的狀況,提出了對輪廓曲線進行最小二乘法擬合與數(shù)控編程的方法。首先根據(jù)凸輪運動規(guī)律按等間隔參數(shù)法對凸輪曲線進行了分段離散,對離散點用最小二乘法擬合出凸輪的第一段圓弧;再根據(jù)所計算的擬合圓與凸輪曲線的偏差用最小二乘法擬合以得到其余各圓弧段;最終完成了整個輪廓擬合及數(shù)控編程。研究結(jié)果表明,用該方法進行等流量柱塞泵凸輪的數(shù)控編程,擬合圓弧段少、光順性好,避免了在數(shù)控加工時產(chǎn)生振動,可提高加工質(zhì)量。
改進的最小二乘法計算固結(jié)系數(shù)
格式:pdf
大?。?span id="omm8gcw" class="single-tag-height" data-v-09d85783>198KB
頁數(shù):3P
改進的最小二乘法計算固結(jié)系數(shù)——目前計算固結(jié)系數(shù)常用的方法是時間對數(shù)法和平方根法,這兩種方法屬于作圖法,同時這兩種方法僅利用了試樣固結(jié)試驗中沉降量與時間關系曲線中較少的數(shù)據(jù),人為因素影響較大,確定固結(jié)系數(shù)有一定誤差,因此,如果利用固結(jié)過程中的...
基于最小二乘法的比例閥建模和參數(shù)辨識
格式:pdf
大?。?span id="28i0miw" class="single-tag-height" data-v-09d85783>635KB
頁數(shù):3P
4.7
采用有效通流面積參數(shù)描述比例閥閥口流量與閥口壓降之間的關系并建立其模型?;趂esto液壓實驗平臺搭建液壓回路,根據(jù)采集的實驗數(shù)據(jù),采用最小二乘法辨識模型參數(shù),得到比例閥的有效通流面積和控制信號的二階傳遞函數(shù)。實驗結(jié)果證明了該方法的正確性和可行性。
最小二乘法在計算地基沉降中的應用方法
格式:pdf
大小:852KB
頁數(shù):2P
4.4
在計算地基沉降量過程中,根據(jù)已獲得的沉降觀測資料,找出具有一定實用價值的沉降規(guī)律,可以更準確地確定地基沉降與時間關系。采用線性回歸(最小二乘法),確定最佳擬合曲線,從而計算出沉降規(guī)律具有十分重要的意義。
用最小二乘法估算給水管道造價公式中的參數(shù)
格式:pdf
大?。?span id="yi4meee" class="single-tag-height" data-v-09d85783>282KB
頁數(shù):3P
4.7
將單位管線建造費用公式轉(zhuǎn)化為線性形式,先假設a為已知,根據(jù)最小二乘法原理進行線性回歸從而確定b,α的值。問題的關鍵便轉(zhuǎn)化為對a值的確定,通過對回歸方程相關指數(shù)r的分析,運用消去法找出最優(yōu)的a值。根據(jù)所建的數(shù)學模型編寫c++程序,并通過算例證明能夠準確,快捷的計算,得出較為滿意的參數(shù)值。
用最小二乘法估算給水管道造價公式中的參數(shù)
格式:pdf
大?。?span id="6uwgsmq" class="single-tag-height" data-v-09d85783>1.0MB
頁數(shù):3P
4.7
**資訊http://www.***.*** **資訊http://www.***.*** **資訊http://www.***.***
測量平差與最小二乘法在工程測量中的應用
格式:pdf
大小:970KB
頁數(shù):3P
4.7
通過運用最小二乘法求殘差二次型vtpv的極小值和極小值點,將經(jīng)典的測量平差方法與工程應用緊密聯(lián)系起來,評定測量結(jié)果的精度,消除測量中的不符值,得出最可靠的測量結(jié)果。并引例介紹了對汶川地震前、后一些點位觀測,通過最小二乘原理平差求出最可靠值,對這些點位加以分析,評定該區(qū)域的地形沉降變化情況。
最小二乘法在公路試驗數(shù)據(jù)處理中的應用
格式:pdf
大?。?span id="gyyeoo0" class="single-tag-height" data-v-09d85783>412KB
頁數(shù):3P
4.8
以預應力混凝土鋼絞線的彈性模量和1000h松弛率計算為例,運用excel圖表建立數(shù)學模型和相關系數(shù)檢驗,采用線性回歸方法和最小二乘法原理來處理,能夠得到理想的方程和準確的結(jié)果。這種方法也可以很好地應用于其他的公路試驗數(shù)據(jù)處理。
最小二乘法原理在橋梁檢測中的應用
格式:pdf
大?。?span id="ki8oiw0" class="single-tag-height" data-v-09d85783>352KB
頁數(shù):3P
4.5
1概述 2最小二乘法原理 隨著公路大規(guī)模建設的開展,橋梁數(shù)量迅猛增長,由 于使用荷載、環(huán)境因素以及結(jié)構(gòu)本身缺陷等的作用,橋梁 使用性能衰退、結(jié)構(gòu)安全和耐久性降低,致使橋梁適應性 不足,甚至出現(xiàn)安全事故。從發(fā)達國家橋梁使用狀況看, 混凝土橋梁使用20~30年后,即出現(xiàn)安全與耐久性方面的 問題。橋梁性能退化、承載能力不足、適應性不夠,已成 為世界各國普遍關心的問題,而通過先進、適用、有效的 方法對橋梁結(jié)構(gòu)進行合理的試驗檢測與診斷評定是對在用 橋梁進行預防性養(yǎng)護管理,科學維護加固的重要手段。在 此介紹最小二乘法及它在excel程序中的應用。(本文只 針對數(shù)據(jù)的處理方法予以闡述,對于檢測過程不再作說 明。) 最小二乘法(又稱最小平方法)是一種數(shù)學優(yōu)化技 術。它通過最小化誤差的平方和尋找數(shù)據(jù)的最佳函數(shù)匹 配。利用最小二乘法可以簡便的求得未知的數(shù)據(jù),并使得 這些求得的數(shù)據(jù)與實際數(shù)據(jù)之間誤差的平方和
軌道交通引起地面環(huán)境振動最小二乘法分析
格式:pdf
大?。?span id="guckcwo" class="single-tag-height" data-v-09d85783>774KB
頁數(shù):5P
4.3
為綜合研究城市軌道交通引起的環(huán)境振動及傳播規(guī)律,基于北京城市軌道交通地面運行線路沿線環(huán)境振動的現(xiàn)場觀測,在最小二乘準則條件下,采用數(shù)理統(tǒng)計回歸方法,在時域和頻域內(nèi)對觀測數(shù)據(jù)進行分析,提出地面垂向振動衰減的經(jīng)驗公式,并與多項式擬合結(jié)果進行了比較.分析結(jié)果表明:垂向振動水平高出水平向較多,評價環(huán)境振動水平時,應以垂直方向的振動為主,近軌區(qū)域,地面振動以高頻為主,遠軌區(qū)域,地面振動以低頻為主.荷載的變化會使列車對軌道的激勵成分發(fā)生了改變,環(huán)境振動的幅值及其傳播規(guī)律也發(fā)生變化.
最小二乘法在土地復墾場平整中的應用
格式:pdf
大?。?span id="ycmsyu2" class="single-tag-height" data-v-09d85783>545KB
頁數(shù):3P
4.5
在滿足土地復墾用途要求的前提下,設計場地平整參數(shù),提高平整土方量計算精度。研究方法:采用最小二乘法。研究結(jié)果:用最小二乘法設計場地平整參數(shù)的法方程、土方量計算公式及其精度分析公式。研究結(jié)論:用最小二乘法進行場地平整參數(shù)設計及土方量計算,適用范圍廣,計算精度高,而且易于計算機實現(xiàn)。
用最小二乘法確定豎井地基平均固結(jié)度
格式:pdf
大小:607KB
頁數(shù):4P
4.6
基于成層豎井地基固結(jié)理論,分析了豎井地基沉降隨時間變化的一般表達式,提出了利用最小二乘優(yōu)化方法根據(jù)實測數(shù)據(jù)擬合沉降曲線,進而確定豎井地基平均固結(jié)度的方法。通過應用于一真空預壓作用下豎井地基的工程實例,對該方法的適用性作了分析,結(jié)果表明實例沉降數(shù)據(jù)與理論曲線吻合較好。
遞推最小二乘法辨識連續(xù)帶鋼熱鍍鋅退火爐模型參數(shù)
格式:pdf
大?。?span id="a8yw6c2" class="single-tag-height" data-v-09d85783>1.6MB
頁數(shù):2P
4.8
提出了用遞推最小二乘法辨識連續(xù)帶鋼熱鍍鋅退火爐模型參數(shù)。在已建立的連續(xù)帶鋼熱鍍鋅退火爐數(shù)學模型的基礎上,經(jīng)過分析計算確定模型參數(shù)??紤]到最小二乘法的缺陷,選用遞推最小二乘法進行參數(shù)辨識,并結(jié)合實例給出辨識結(jié)果和分析,證明了該方法的可行性。
基于偏最小二乘法的支持向量機短期負荷預測
格式:pdf
大?。?span id="020wuck" class="single-tag-height" data-v-09d85783>754KB
頁數(shù):5P
4.3
提出了一種基于偏最小二乘支持向量機的負荷預測模型。首先通過偏最小二乘(pls)對負荷數(shù)據(jù)進行成分提取,提取的成分具有線性特點,并消除輸入因素的多重相關性,然后采用支持向量機方法(svm)對提取的成分進行預測。算例表明,該算法用于短期負荷預測建模速度快,預測精度高,是種行之有效的方法。
基于最小二乘法的原材料差異調(diào)整方法
格式:pdf
大?。?span id="swywgoe" class="single-tag-height" data-v-09d85783>765KB
頁數(shù):9P
4.4
為解決原材料計量磅差和管理等原因造成的物資出庫量與實際消耗量間的差異問題,提出了一種基于最小二乘法的差異調(diào)整方法。該方法根據(jù)生產(chǎn)工況和產(chǎn)品工藝特征的實際要求,基于最小二乘法理論,以產(chǎn)品原材料的成分含量(或消耗量)最接近其標準含量(或額定消耗量)為依據(jù)構(gòu)造了目標函數(shù),抽取了橫向平衡、縱向平衡和成分含量平衡等規(guī)則,建立了差異調(diào)整數(shù)學模型,并采用粒子群優(yōu)化算法進行了求解,避免了按照消耗比例調(diào)整差異結(jié)果偏離生產(chǎn)實際工況、產(chǎn)品含量不符合標準的問題。通過鋼鐵行業(yè)的應用實例,給出了該方法的具體實現(xiàn)過程,并與以往方法的調(diào)整結(jié)果進行對比分析,驗證了方法的可行性。
最小二乘法在巖土三軸剪切實驗中數(shù)據(jù)處理的應用
格式:pdf
大小:176KB
頁數(shù):2P
3
最小二乘法在巖土三軸剪切實驗中數(shù)據(jù)處理的應用——利用最小二乘法處理巖土三軸剪切實驗數(shù)據(jù)。利用excel電子表格軟件自動繪圖、輸出結(jié)果。實驗結(jié)果證明,此法不僅數(shù)據(jù)可靠有效,而且可應用于實際工程中。
方差泛函變分與高斯配點離散型最小二乘法
格式:pdf
大?。?span id="qwumgcw" class="single-tag-height" data-v-09d85783>150KB
頁數(shù):7P
3
方差泛函變分與高斯配點離散型最小二乘法——在理論研究和工程分析中通常把問題歸結(jié)為一定邊界條件和初值條件求解偏微分方程的問題,方程可以是線性或非線性的。
基于移動最小二乘法的電梯客流分析
格式:pdf
大?。?span id="ugk22wq" class="single-tag-height" data-v-09d85783>335KB
頁數(shù):4P
4.5
為了解決傳統(tǒng)算法電梯停站數(shù)不準確的缺點,本文建立了一種基于移動最小二乘法(mov-ingleast-squares,mls)的曲面擬合方法來建立大樓一天中最大5min客流量模型.這種方法對傳統(tǒng)的客流量算法及停站數(shù)算法作了比較大的改進,并用驗證了這種方法的可行性,與傳統(tǒng)算法比較具有精度高的優(yōu)點.
最小二乘法在施工放線方面的應用
格式:pdf
大?。?span id="0oi2uci" class="single-tag-height" data-v-09d85783>28KB
頁數(shù):未知
4.7
對外型為曲線的鋼筋混凝土結(jié)構(gòu),施工放線前,利用最小二乘法原理,根據(jù)已給出的工程數(shù)據(jù),確定出構(gòu)件輪廓曲線的近似函數(shù),使該函數(shù)所代表曲線上各點精度滿足施工要求,再利用這個近似函數(shù)對構(gòu)件進行放線。
總體最小二乘法在橋梁砼密度參數(shù)識別中的應用
格式:pdf
大?。?span id="smsi22k" class="single-tag-height" data-v-09d85783>118KB
頁數(shù):未知
4.6
基于矮寨連續(xù)剛構(gòu)橋懸臂施工中主梁撓度測試結(jié)果,對實測值和仿真計算理論值之間存在偏差進行了分析,結(jié)果表明,由于施工中存在脹膜等因素影響,導致砼實際密度與設計取值存在偏差,而這個偏差是不容忽略的。為此,運用總體最小二乘法(tls)對原模型中砼密度參數(shù)進行識別,識別后的結(jié)果較識別前更加符合實際情況。
最小二乘法在管道外防腐層評級中的應用研究
格式:pdf
大?。?span id="mkqkawq" class="single-tag-height" data-v-09d85783>128KB
頁數(shù):未知
4.4
本文應用最小二乘法曲線擬合理論,對埋地鋼質(zhì)管道腐蝕防護工程檢驗標準gwr19285—2014中未列出的較小管徑外防腐層檢測評級表進行插值,經(jīng)實踐驗證,可以滿足實際檢驗需求,并與實際情況相符合。
整體最小二乘法平面坐標轉(zhuǎn)換在基坑水平位移監(jiān)測中的應用
格式:pdf
大?。?span id="2sy2gaw" class="single-tag-height" data-v-09d85783>187KB
頁數(shù):未知
4.3
在參數(shù)求解過程中,經(jīng)常遇到參數(shù)估計模型的觀測向量和系數(shù)矩陣都可能存在誤差的情況,于是人們在20世紀80年代提出了整體最小二乘方法。近幾年,整體最小二乘才被引入測量領域。本文詳細闡述了整體最小二乘法平面坐標轉(zhuǎn)換基于奇異值分解原理的解算過程。在此基礎上,把整體最小二乘法平面直角坐標轉(zhuǎn)換應用到基坑水平位移監(jiān)測中,改進了傳統(tǒng)的變形監(jiān)測數(shù)據(jù)處理方法,并運用工程實例驗證了該方法的可行性。
文輯推薦
知識推薦
百科推薦
職位:暖通設計員
擅長專業(yè):土建 安裝 裝飾 市政 園林