金屬和氧化物薄膜生長。
本底真空1E-8torr,3直流靶,1射頻靶,功率600W。
DEH系統(tǒng)主要功能: 汽輪機(jī)轉(zhuǎn)速控制;自動同期控制;負(fù)荷控制;參與一次調(diào)頻;機(jī)、爐協(xié)調(diào)控制;快速減負(fù)荷;主汽壓控制;單閥控制、多閥解耦控制;閥門試驗;輪機(jī)程控啟動;OPC控制;甩負(fù)荷及失磁工況控制;...
一、 LED 的結(jié)構(gòu)及發(fā)光原理50 年前人們已經(jīng)了解半導(dǎo)體材料可產(chǎn)生光線的基本知識,第一個商用二極管產(chǎn)生于 1960 年。 LED 是英文 light emitting diode (發(fā)光二極管)的縮...
⒈保水.保水劑不溶于水,但能吸收相當(dāng)自身重量成百倍的水.保水劑可有效抑制水分蒸發(fā).土壤中滲入保水劑后,在很大程度上抑制了水分蒸發(fā),提高了土壤飽和含水量,降低了土壤的飽和導(dǎo)水率,從而減緩了土壤釋放水的速...
格式:pdf
大?。?span id="6i7qiyp" class="single-tag-height">11KB
頁數(shù): 1頁
評分: 4.5
道閘 主要功能: 功能一,手動按鈕可作 ‘升’‘降’及‘?!僮鳌o線遙控可作 ‘升’‘降’‘?!皩κ謩影粹o的 ‘加鎖’‘解鎖 ’操作 ; 功能二,停電自動解鎖,停電后可手動抬桿 ; 功能三,具有便于維護(hù)與調(diào)試的 ‘自檢模式 ’; 道閘 道閘又稱擋車器,最初從國外引進(jìn),英文名叫 Barrier Gate ,是專門用于道路上限 制機(jī)動車行駛的通道出入口管理設(shè)備 ,現(xiàn)廣泛應(yīng)用于公路收費站、 停車場系統(tǒng) 管理車 輛通道,用于管理車輛的出入。電動道閘可單獨通過無線遙控實現(xiàn)起落桿,也可以通過 停車場管理系統(tǒng) (即 IC 刷卡管理系統(tǒng))實行自動管理狀態(tài),入場取卡放行車輛,出場 時,收取 停車費 后自動放行車輛。
格式:pdf
大?。?span id="yndxqfw" class="single-tag-height">11KB
頁數(shù): 12頁
評分: 4.6
電氣控制設(shè)備有四大主要功能
將金屬薄層沉積到襯底或之前獲得的薄層的技術(shù)稱為表面沉積。這里的"薄"是一個相對的概念,但大多數(shù)的沉積技術(shù)都可以將薄層厚度控制在幾個到幾十納米尺度的范圍內(nèi),分子束外延技術(shù)可以得到單一原子層的結(jié)構(gòu)。
沉積技術(shù)在光學(xué)儀器(消反射膜,減反射膜,自清潔表面等)、電子技術(shù)(薄膜電阻,半導(dǎo)體,集成電路)、包裝和現(xiàn)代藝術(shù)都有應(yīng)用。在對薄膜厚度要求不高時,類似于沉積的技術(shù)常常被使用。例如:用電解法提純銅,硅沉積,鈾的提純中都用到了類似于化學(xué)氣象沉積的過程。
沉積技術(shù)根據(jù)其使用的主要原理可分為兩大類:物理沉積和化學(xué)沉積。
化學(xué)氣相沉積是制備各種薄膜材料的一種重要和普遍使用的技術(shù),利用這一技術(shù)可以在各種基片上制備元素及化合物薄膜?;瘜W(xué)氣相沉積相對于其他薄膜沉積技術(shù)具有許多優(yōu)點:它可以準(zhǔn)確地控制薄膜的組分及摻雜水平使其組分具有理想化學(xué)配比;可在復(fù)雜形狀的基片上沉積成膜;由于許多反應(yīng)可以在大氣壓下進(jìn)行,系統(tǒng)不需要昂貴的真空設(shè)備;化學(xué)氣相沉積的高沉積溫度會大幅度改善晶體的結(jié)晶完整性;可以利用某些材料在熔點或蒸發(fā)時分解的特點而得到其他方法無法得到的材料;沉積過程可以在大尺寸基片或多基片上進(jìn)行。
化學(xué)氣相沉積的明顯缺點是化學(xué)反應(yīng)需要高溫;反應(yīng)氣體會與基片或設(shè)備發(fā)生化學(xué)反應(yīng);在化學(xué)氣相沉積中所使用的設(shè)備可能較為復(fù)雜,且有許多變量需要控制。
化學(xué)氣相沉積有較為廣泛的應(yīng)用,例如利用化學(xué)氣相沉積,在切削工具上獲得的TiN或SiC涂層,通過提高抗磨性可大幅度提高刀具的使用壽命;在大尺寸基片上,應(yīng)用化學(xué)氣相沉積非晶硅可使太陽能電池的制備成本降低;化學(xué)氣相沉積獲得的TiN可以成為黃金的替代品從而使裝飾寶石的成本降低。而化學(xué)氣相沉積的主要應(yīng)用則是在半導(dǎo)體集成技術(shù)中的應(yīng)用,例如:在硅片上的硅外延沉積以及用于集成電路中的介電膜如氧化硅、氮化硅的沉積等。
在化學(xué)氣相沉積中,氣體與氣體在包含基片的真空室中相混合。在適當(dāng)?shù)臏囟认?,氣體發(fā)生化學(xué)反應(yīng)將反應(yīng)物沉積在基片表面,最終形成固態(tài)膜。在所有化學(xué)氣相沉積過程中所發(fā)生的化學(xué)反應(yīng)是非常重要的。在薄膜沉積過程中可控制的變量有氣體流量、氣體組分、沉積溫度、氣壓、真空室?guī)缀螛?gòu)型等。因此,用于制備薄膜的化學(xué)氣相沉積涉及三個基本過程:反應(yīng)物的輸運過程,化學(xué)反應(yīng)過程,去除反應(yīng)副產(chǎn)品過程。廣義上講,化學(xué)氣相沉積反應(yīng)器的設(shè)計可分成常壓式和低壓式,熱壁式和冷壁式。常壓式反應(yīng)器運行的缺點是需要大流量攜載氣體、大尺寸設(shè)備,膜被污染的程度高;而低壓化學(xué)氣相沉積系統(tǒng)可以除去攜載氣體并在低壓下只使用少量反應(yīng)氣體,此時,氣體從一端注入,在另一端用真空泵排出。因此,低壓式反應(yīng)器已得到廣泛應(yīng)用和發(fā)展。在熱壁式反應(yīng)器中,整個反應(yīng)器需要達(dá)到發(fā)生化學(xué)反應(yīng)所需的溫度,基片處于由均勻加熱爐所產(chǎn)生的等溫環(huán)境下;而在冷壁式反應(yīng)器中,只有基片需要達(dá)到化學(xué)反應(yīng)所需的溫度,換句話說,加熱區(qū)只局限于基片或基片架。
下面是在化學(xué)氣相沉積過程中所經(jīng)常遇到的一些典型的化學(xué)反應(yīng)。
1.分解反應(yīng)
早期制備Si膜的方法是在一定的溫度下使硅烷SiH4分解,這一化學(xué)反應(yīng)為:
SiH4(g) ——→Si(s) 2H2(g)
許多其他化合物氣體也不是很穩(wěn)定,因而利用其分解反應(yīng)可以獲得金屬薄膜:
Ni(CO)4(g)——→Ni(s) 4CO(g)
Til2(g)——→Ti(s) 2I(g)
2.還原反應(yīng)
一個最典型的例子是H還原鹵化物如SICl4獲得Si膜:
SiCl4(g) 2H2(g)——→Si(s) 4HCl(g)
其他例子涉及鎢和硼的鹵化物:
WCl6(g) 3H2(g)——→W(s) 6HCl(g)
WF6(g) 3H2(g)——→W(s) 6HF(g)
2BCl3(g) 3H2(g)——→2B(g) 6HCI(g)
氯化物是更常用的鹵化物,這是因為氯化物具有較大的揮發(fā)性且容易通過部分分餾而鈍化。氫的還原反應(yīng)對于制備像Al、Ti等金屬是不適合的,這是因為這些元素的鹵化物較穩(wěn)定。
3.氧化反應(yīng)
SiO2通常由SiH4的氧化制得,其發(fā)生的氧化反應(yīng)為:
SiH4(g) O2(g)——→SiO2(s) 2H2(g)反應(yīng)可以在450℃較低的溫度下進(jìn)行。
常壓下的化學(xué)氣相反應(yīng)沉積的優(yōu)點在于它對設(shè)備的要求較為簡單,且相對于低壓化學(xué)氣相反應(yīng)沉積系統(tǒng),它的價格較為便宜。但在常壓下反應(yīng)時,氣相成核數(shù)將由于使用的稀釋惰性氣體而減少。
SiCl4和GeCl4的直接氧化需要高溫:
SiCl4(g) O2(g)——→SiOz(s) 2Cl2(g)
GeCl4(g) O2(g)——→GeO2(s) 2Cl2(g)
由氯化物的水解反應(yīng)可氧化沉積Al:
Al2Cl6(g) 2CO2(g) 3H2(g)——→Al2O3(s) 6HCl(g) 3CO(g)
4.氮化反應(yīng)和碳化反應(yīng)
氮化硅和氮化硼是化學(xué)氣相沉積制備氮化物的兩個重要例子:
3SiH4(g) 4NH3(g)——→Si3N4(s) 12H2(g)
下列反應(yīng)可獲得高沉積率:
3SiH2Cl2(g) 4NH3(g)——→Si3N4(s) 6HCI(g) 6H2(g)
BCl3(g) NH3(g)——→BN(s) 3HCl(g)
化學(xué)氣相沉積方法得到的膜的性質(zhì)取決于氣體的種類和沉積條件(如溫度等)。例如,在一定的溫度下,氮化硅更易形成非晶膜。在碳?xì)錃怏w存在情況下,使用氯化還原化學(xué)氣相沉積方法可以制得TiC:
TiCl4(g) CH4(g)——→TiC(s) 4HCl(g)
CH3SiCl3的熱分解可產(chǎn)生碳化硅涂層:
CH3SiCl3(g)——→SiC(s) 3HCl(g)
5.化合反應(yīng)
由有機(jī)金屬化合物可以沉積得到Ⅲ~V族化合物:
Ga(CH3)3(g) AsH3(g)——→GaAs(s) 3CH4(g)
如果系統(tǒng)中有溫差,當(dāng)源材料在溫度T1時與輸運氣體反應(yīng)形成易揮發(fā)物時就會發(fā)生化學(xué)輸運反應(yīng)。當(dāng)沿著溫度梯度輸運時,揮發(fā)材料在溫度T2(T1>T2)時會發(fā)生可逆反應(yīng),在反應(yīng)器的另一端出現(xiàn)源材料:
6GaAs(g) 6HCI(g)?As4(g) As2(g)) 6GaCI(g) 3H2(g)(T1正反應(yīng),T2逆反應(yīng))
在逆反應(yīng)以后,所獲材料處于高純態(tài)。
下表給出了化學(xué)氣相沉積制備薄膜時所使用的化學(xué)氣體以及沉積條件。
膜 |
反應(yīng)氣體 |
沉積溫度/℃ |
基底 |
ZnO |
(C2H5)2Zn和O2 |
200~500 |
玻璃 |
Ge |
GeH4 |
500~900 |
Si |
SnO2 |
SnCl2和O2 |
350~500 |
玻璃 |
Nb/Ge |
NbCl5和GeCl4 |
800和900 |
氧化鋁 |
BN |
BCl3和NH3 |
600~1000 |
SiO2和藍(lán)寶石 |
TiB2 |
H2,Ar,TiCl4和B2H5 |
600~900 |
石墨 |
BN |
BCl3和NH3 |
250~700 |
Cu |
a-Si :H |
Si2H4 |
380~475 |
Si |
CdTe |
CdTe和HCl |
550~650 |
CdTe(110) |
Si |
SiH4 |
570~640 |
Si(001) |
W |
WF6,Si和H2 |
300 |
熱氧化Si片 |
Si3N4 |
SiH2Cl2::NH3=1:3 |
800 |
n型Si(111) |
B |
B10H14 |
600~1200 350~700 |
Al2O3和Si Ta片 |
Si |
SiH4 |
775 |
Si片 |
TiSn2 |
SiH4和TiCl4 |
650~700 |
Si片 |
W |
WF6和Si |
400 |
多晶Si |
電沉積
電沉積(Electrodeposition)是一種制備化合物薄膜的常用方式?,F(xiàn)以沉積碲化鎘薄膜為例介紹它的基本特征。
電解液是含有鎘鹽和氧化亞碲的酸性水溶液,典型的組分是CdSO4和HTeO2 。電解與沉積的反應(yīng)式為:
HTeO2 3H 4e-—→Te 2H2O
Cd2 Te 2e- —→ CdTe
上面兩個反應(yīng)同時在陰極表面上進(jìn)行。陰極則是有透明導(dǎo)電膜或有硫化鎘薄膜的襯底。陰極的電位為-0.2~ -0.5 V(相對于標(biāo)準(zhǔn)甘汞電極),這個值略低于金屬鎘的沉積電位。為了讓電沉積過程持續(xù)進(jìn)行,還要把純鎘棒和純碲棒放置在電解槽內(nèi)。這樣可以延長電解液的使用壽命,一般在半年左右。使用壽命主要決定于電解液的組分、濃度變化和雜質(zhì)的增加。
在沉積過程中,溶液須加熱并要保持一定的溫度(如在70~90℃之間)。溶液還須攪拌,常用的方式是利用塑料泵讓電解液循環(huán),充分的攪拌是制備大面積均勻薄膜的關(guān)鍵。受TeO2溶解度的制約,HTeO2 在溶液中的濃度較低。因此,沉積速率基本上由HTeO2 的濃度決定。于是,薄膜的沉積速率也較低,大約為1~2 μm/h。電沉積的主要參數(shù)包括溶液的組分、pH值、溫度、HTeO2 的濃度、陰極電位、陽極電位和攪拌。電沉積的另一個特點是在沉積過程中加入摻雜劑可實現(xiàn)共—電沉淀(Co-Electrodeposition),從而獲得n型或p型的樣品,也可以獲得三元系的薄膜。2100433B