中文名 | 超磁致伸縮固體振子MEMS微陀螺的研究 | 項(xiàng)目類別 | 面上項(xiàng)目 |
---|---|---|---|
項(xiàng)目負(fù)責(zé)人 | 崔峰 | 依托單位 | 上海交通大學(xué) |
MEMS陀螺是陀螺儀發(fā)展的一個(gè)重要方向。不同于發(fā)展成熟的支懸梁-活動(dòng)質(zhì)量塊結(jié)構(gòu)的振動(dòng)微陀螺,本項(xiàng)目提出了一種基于超磁致伸縮材料塊體的固體振子雙輸入軸微陀螺,其結(jié)構(gòu)簡(jiǎn)單,無(wú)支撐梁,抗沖擊振動(dòng)能力強(qiáng);借助于超磁致伸縮材料(GMM)的大應(yīng)變振動(dòng)特性,其測(cè)量靈敏度高。 本項(xiàng)目主要對(duì)超磁致伸縮固體微陀螺的振動(dòng)模態(tài)、結(jié)構(gòu)設(shè)計(jì)、機(jī)電磁系統(tǒng)仿真、制造工藝以及測(cè)控方法進(jìn)行研究,為實(shí)現(xiàn)微陀螺裝置奠定理論與實(shí)驗(yàn)基礎(chǔ)。本項(xiàng)目的實(shí)施取得了預(yù)期成果,主要總結(jié)為: 1、微陀螺的設(shè)計(jì)和仿真。根據(jù)GMM數(shù)理模型,采用更具擴(kuò)展性的弱解方程方法,利用COMSOL軟件計(jì)算了GMM振子的振動(dòng)工作模態(tài),結(jié)果與壓電-壓磁比擬法的相近。微陀螺的設(shè)計(jì)結(jié)構(gòu)由GMM方體振子、平面線圈定子、偏置永磁體和GMR傳感器組成,進(jìn)行了部件選用和設(shè)計(jì)。采用磁矢勢(shì)弱解方程法對(duì)通電平面線圈和永磁體的空間磁場(chǎng)分布進(jìn)行了系統(tǒng)級(jí)仿真。 2、微陀螺表頭的制造。采用濺射、光刻、電鍍等MEMS工藝,獲得了多種線寬和匝數(shù)的驅(qū)動(dòng)平面線圈定子。對(duì)集成厚金屬結(jié)構(gòu)的發(fā)煙硫酸氧化刻蝕去除SU-8膠模的技術(shù)深入試驗(yàn)研究,獲得了刻除SU-8膠模的速率曲線,從而提供了一次浸入發(fā)煙硫酸干凈刻除SU-8膠模的時(shí)間,避免了反復(fù)取出觀測(cè)或過(guò)刻對(duì)金屬結(jié)構(gòu)的腐蝕;成功集成了厚達(dá)500μm的電鑄鎳微結(jié)構(gòu)。根據(jù)設(shè)計(jì)結(jié)構(gòu),成功組裝了長(zhǎng)寬高尺寸之和不大于20mm的磁致伸縮固體振子微陀螺表頭。 3、微陀螺的驅(qū)動(dòng)及檢測(cè)電路。為微陀螺表頭設(shè)計(jì)了激勵(lì)信號(hào)發(fā)生電路(采用DDS芯片)、恒電流輸出線圈驅(qū)動(dòng)電路、GMR磁場(chǎng)信號(hào)檢測(cè)電路和信號(hào)解調(diào)處理電路,進(jìn)行了電路仿真分析和PCB板制作。 4、微陀螺的測(cè)試實(shí)驗(yàn)。利用LCR儀測(cè)量了定子平面線圈的阻抗,為表頭中上下定子驅(qū)動(dòng)線圈的配對(duì)選取提供參考。采用鎖相放大器分別利用定子平面線圈和繞制線圈進(jìn)行掃頻激勵(lì),測(cè)量了GMM體振子的阻抗頻率特性曲線,二者測(cè)得微陀螺GMM振子的工作諧振頻率基本相同,證明了本微陀螺采用雙側(cè)平面線圈的激振方式使GMM振子工作在驅(qū)動(dòng)諧振頻率上是可行的。對(duì)微陀螺表頭及其測(cè)控電路進(jìn)行了聯(lián)調(diào),發(fā)現(xiàn)微陀螺能靈敏地檢測(cè)輸入角速度的變化,證明了設(shè)計(jì)結(jié)構(gòu)及其實(shí)現(xiàn)方案在原理上是可行的。 上述研究成果已發(fā)表6篇學(xué)術(shù)論文,其中SCI/EI已檢索英文論文5篇;申請(qǐng)發(fā)明專利2項(xiàng);培養(yǎng)畢業(yè)碩士生2名。 2100433B
微型固態(tài)振動(dòng)陀螺結(jié)構(gòu)簡(jiǎn)單,抗沖擊能力強(qiáng),適合MEMS技術(shù)制作,是一種極具發(fā)展?jié)摿Φ男滦屯勇輧x。相比帶支懸梁的微機(jī)械振動(dòng)陀螺,本項(xiàng)目創(chuàng)造性地將超磁致伸縮材料整體作為振子,基于MEMS技術(shù)制成無(wú)支懸梁的固體微陀螺,主要特點(diǎn)如下:(1)超磁致伸縮體伸縮振幅大,可極大提高微陀螺檢測(cè)的靈敏度;(2)結(jié)構(gòu)簡(jiǎn)單,無(wú)支撐梁,抗沖擊抗震動(dòng)能力強(qiáng);(3)易于微加工批量制造,對(duì)真空封裝無(wú)特殊要求;(4)驅(qū)動(dòng)電壓低,起振時(shí)間極短,因而陀螺啟動(dòng)時(shí)間短。(5)將巨磁阻(GMR)敏感元件集成于陀螺本體上,提高了檢測(cè)分辨率,且體積??;(6)可同時(shí)測(cè)量二軸角速率。本項(xiàng)目主要對(duì)超磁致伸縮固體微陀螺的工作機(jī)理、機(jī)電磁系統(tǒng)仿真、結(jié)構(gòu)優(yōu)化設(shè)計(jì)、基于非硅MEMS技術(shù)的制造工藝以及測(cè)控方法進(jìn)行深入研究,為實(shí)現(xiàn)較高測(cè)量靈敏度的、多軸微固體陀螺裝置奠定理論與實(shí)驗(yàn)基礎(chǔ)。本項(xiàng)目屬機(jī)械、材料、測(cè)控、電子等交叉學(xué)科課題,學(xué)術(shù)價(jià)值高,應(yīng)用前景廣泛。
你好,據(jù)我所知,十大mems陀螺儀生產(chǎn)廠家有美泰電子科技有限公司,蘇州邁瑞微電子有限公司,蘇州敏芯微電子技術(shù)有限公司,蘇州明皜傳感科技有限公司,我覺(jué)得蘇州明皜傳感科技有限公司就蠻不錯(cuò)的,東西質(zhì)量也不錯(cuò)...
自從1976年美國(guó)猶他大學(xué)的VALI和SHORTHILL等人成功研制第1個(gè)光纖陀螺(fiber-optic gyroscope, FOG)以來(lái),光纖陀螺已經(jīng)發(fā)展了30多年。在30多年的發(fā)展過(guò)程中,許多...
微型旋轉(zhuǎn)開(kāi)關(guān)價(jià)格不貴的。 ITT微型旋轉(zhuǎn)開(kāi)關(guān)4檔,20元 凱昆KACON開(kāi)關(guān)K16-871R微型開(kāi)關(guān),60元 凱昆KACON開(kāi)關(guān)K16-811R微型開(kāi)關(guān),59元 最新價(jià)格請(qǐng)查詢?cè)靸r(jià)通市場(chǎng)價(jià)
格式:pdf
大?。?span id="xtzse66" class="single-tag-height">1.1MB
頁(yè)數(shù): 5頁(yè)
評(píng)分: 4.6
超磁致伸縮材料具有很強(qiáng)的非線性耦合特性、磁滯特性和復(fù)雜動(dòng)態(tài)特性。因此,建立能夠準(zhǔn)確描述超磁致伸縮致動(dòng)器工作狀態(tài)的模型成為關(guān)鍵問(wèn)題。綜述棒型超磁致伸縮材料在多場(chǎng)耦合特性、磁滯特性建模研究狀況以及超磁致伸縮致動(dòng)器動(dòng)力學(xué)建模研究狀況,分析當(dāng)前所建立多種模型的優(yōu)缺點(diǎn),并展望建模工作的發(fā)展趨勢(shì)。
格式:pdf
大?。?span id="a4cnunv" class="single-tag-height">1.1MB
頁(yè)數(shù): 4頁(yè)
評(píng)分: 4.5
磁致伸縮逆效應(yīng)是稀土超磁致伸縮材料的一個(gè)重要應(yīng)用特性,應(yīng)用磁致伸縮逆效應(yīng)可以制作超磁致伸縮力傳感器。但由于缺乏相應(yīng)的設(shè)計(jì)理論分析,從而制約了其發(fā)展。在分析了磁致伸縮逆效應(yīng)的基礎(chǔ)上,給出了超磁致伸縮力傳感器的設(shè)計(jì)原理,設(shè)計(jì)了超磁致伸縮力傳感器的結(jié)構(gòu),并采用數(shù)值計(jì)算方法對(duì)其磁場(chǎng)進(jìn)行了計(jì)算。計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果的比較表明:二者符合較好,設(shè)計(jì)的超磁致伸縮力傳感器方案是可行的,對(duì)其今后進(jìn)行深入應(yīng)用研究和優(yōu)化設(shè)計(jì)具有重要意義。
《稀土超磁致伸縮換能器》是一本介紹稀土超磁致伸縮大功率換能器的設(shè)計(jì)理論和設(shè)計(jì)方法的專著?!断⊥脸胖律炜s換能器》共分9章。第1章是緒論,主要介紹了常用的換能器材料、現(xiàn)代彎張換能器的設(shè)計(jì)方法及各型彎張換能器的特點(diǎn);第2章分析了稀土超磁致伸縮材料的工作特性,導(dǎo)出了使稀土棒高效工作時(shí)沿棒軸徑向均勻切割最小份數(shù)的計(jì)算公式和等效電路;第3~2章,論述了稀土超磁致伸縮大功率換能器的設(shè)計(jì)理論,并對(duì)研制出的VII和Tonpilz型換能器的性能作了測(cè)試和分析。《稀土超磁致伸縮換能器》中先后用到了ALGOR、SYSNOISE和ANSYS這三種有限元計(jì)算軟件,在相關(guān)部分都相應(yīng)作了簡(jiǎn)單介紹,并在第9章中重點(diǎn)介紹了ANSYS在設(shè)計(jì)換能器中的應(yīng)用。
《稀土超磁致伸縮換能器》可供從事聲換能器研究工作的科技工作者、專業(yè)技術(shù)人員以及大專院校相關(guān)專業(yè)的師生參考。
作者:Mark Looney
摘要
MEMS陀螺儀提供了一種簡(jiǎn)單的旋轉(zhuǎn)角速率測(cè)量方法,其所在的封裝很容易安裝到印刷電路板上。因此,在許多不同類型的運(yùn)動(dòng)控制系統(tǒng)中,它們都是反饋檢測(cè)元件的常見(jiàn)選擇。在此類應(yīng)用中,角速率信號(hào)(MEMS陀螺儀輸出)中的噪聲會(huì)直接影響系統(tǒng)的關(guān)鍵特性(如平臺(tái)穩(wěn)定性),且常常是控制系統(tǒng)能夠支持的精度水平的決定性因素。所以,當(dāng)系統(tǒng)架構(gòu)師和開(kāi)發(fā)者定義和開(kāi)發(fā)新的運(yùn)動(dòng)控制系統(tǒng)時(shí),低噪聲是一個(gè)很自然的價(jià)值導(dǎo)向。更進(jìn)一步,把關(guān)鍵的系統(tǒng)級(jí)標(biāo)準(zhǔn)(如指向精度)轉(zhuǎn)化為噪聲指標(biāo)(MEMS陀螺儀數(shù)據(jù)手冊(cè)常常會(huì)提 供這些指標(biāo)),是早期概念和架構(gòu)設(shè)計(jì)工作的一個(gè)極重要的部分。了解系統(tǒng)對(duì)陀螺儀噪聲特性的依賴性會(huì)產(chǎn)生多方面好 處,例如能夠確定反饋檢測(cè)元件的相關(guān)要求,或者相反,分析系統(tǒng)對(duì)特定陀螺儀中噪聲的響應(yīng)。一旦系統(tǒng)設(shè)計(jì)者充分了 解這種關(guān)系,它們便能從兩個(gè)重要方面來(lái)掌控角速率反饋環(huán)路中的噪聲影響:1. 制定最合適的MEMS陀螺儀選擇標(biāo)準(zhǔn);2. 在傳感器的集成過(guò)程中保持其噪聲性能不變。
運(yùn)動(dòng)控制基礎(chǔ)
為了弄清MEMS陀螺儀噪聲特性與其對(duì)系統(tǒng)關(guān)鍵特性的影響之間的關(guān)系,第一步常常是要對(duì)系統(tǒng)工作原理有一個(gè)基本了解。圖1是一個(gè)運(yùn)動(dòng)控制系統(tǒng)架構(gòu)示例,其中關(guān)鍵的系統(tǒng)元素被拆分為多個(gè)功能模塊。此類系統(tǒng)的功能目標(biāo)是為對(duì)慣性運(yùn)動(dòng)敏感的人員或設(shè)備創(chuàng)建一個(gè)穩(wěn)定的平臺(tái)。應(yīng)用實(shí)例之一是用于自主駕駛車輛平臺(tái)上的微波天線,車輛在惡劣的條件下機(jī)動(dòng)行駛,車速可能會(huì)引起車輛方向突然變化。若不能實(shí)時(shí)控制指向角度,當(dāng)發(fā)生此類慣性運(yùn)動(dòng)時(shí),這些高指向性天線可能無(wú)法支持連續(xù)通信。
圖1. 運(yùn)動(dòng)控制系統(tǒng)架構(gòu)示例。
反饋環(huán)路圖1. 運(yùn)動(dòng)控制系統(tǒng)架構(gòu)示例。從MEMS陀螺儀開(kāi)始,其在穩(wěn)定平臺(tái)上觀測(cè)旋轉(zhuǎn)速率 (φG)。陀螺儀的角速率信號(hào)饋入專用數(shù)字信號(hào)處理部分,其包括濾波、校準(zhǔn)、對(duì)齊和積分,以產(chǎn)生實(shí)時(shí)方向反饋 (φE)。伺服電機(jī)的控制信號(hào) (φCOR) 來(lái)自此反饋信號(hào)與指示方向 (φCMD) 的比較,而指示方向可來(lái)自一個(gè)中央任務(wù)處理系統(tǒng),或者代表一個(gè)支持平臺(tái)上的設(shè)備以理想方式運(yùn)行的方向。
應(yīng)用示例
圖1顯示了運(yùn)動(dòng)控制系統(tǒng)的架構(gòu)視圖,分析應(yīng)用特定的物理性質(zhì)也能得出有價(jià)值的定義和見(jiàn)解。考慮圖2中的系統(tǒng),它是生產(chǎn)線自動(dòng)檢查系統(tǒng)的概念視圖。該攝像頭系統(tǒng)檢查輸送帶上移入移出其視場(chǎng)的物件。在這種配置中,攝像頭通過(guò)一根長(zhǎng)支架固定于天花板;針對(duì)攝像頭要檢查的對(duì)象大小,攝像頭通過(guò)支架所決定的高度(參見(jiàn)圖2中的D)來(lái)優(yōu)化其視場(chǎng)。工廠中全是各種機(jī)器和其他作業(yè),因此,攝像頭會(huì)不時(shí)地發(fā)生 擺動(dòng)(參見(jiàn)圖2中的φSW(t)),這可能引起檢查圖像的失真。圖中的紅色虛線是此擺動(dòng)引起的總角向誤差 (±φSW) 的夸大視圖,綠色虛線表示能夠支持系統(tǒng)圖像質(zhì)量目標(biāo)的角向誤差水平 (±φRE)。圖2中的視圖利用檢查表面上的線性位移誤差(dSW、dRE)定義系統(tǒng)級(jí)關(guān)鍵指標(biāo)(圖像失真)。這些性質(zhì)與攝像頭高度 (D) 和角向誤差項(xiàng)(?SW、φRE)之間有著簡(jiǎn)單的三 角函數(shù)關(guān)系,如公式1所示。
圖2. 工業(yè)攝像頭檢查系統(tǒng)。
對(duì)于此類系統(tǒng),最適合的運(yùn)動(dòng)控制技術(shù)是所謂圖像穩(wěn)定化技術(shù)。早期圖像穩(wěn)定系統(tǒng)使用基于陀螺儀的反饋系統(tǒng)來(lái)驅(qū)動(dòng)伺服電機(jī),進(jìn)而調(diào)整圖像傳感器在快門開(kāi)啟期間的方向。MEMS技術(shù)的出現(xiàn)掀起了一場(chǎng)革命,幫助降低了這些功能的尺寸、成本和功耗,導(dǎo)致該技術(shù)廣泛用于當(dāng)今的數(shù)字?jǐn)z像頭。得益于數(shù)字圖像處理技術(shù)(其算法中仍然使用基于MEMS的角速率測(cè)量)的進(jìn)步,許多應(yīng)用已不再使用伺服電 機(jī)。無(wú)論圖像穩(wěn)定是由伺服電機(jī)實(shí)現(xiàn),還是通過(guò)對(duì)圖像文件的數(shù)字后處理實(shí)現(xiàn),陀螺儀的基本功能(反饋檢測(cè))依然未 變,其噪聲影響也仍然存在。為簡(jiǎn)明起見(jiàn),本討論將聚焦于經(jīng)典方法(圖像傳感器上的伺服電機(jī))來(lái)考察相關(guān)度最高的 噪聲基本原理,以及它們與此類應(yīng)用最重要的物理性質(zhì)之間的關(guān)系。
角向隨機(jī)游動(dòng) (ARW)
所有MEMS陀螺儀的角速率測(cè)量中都有噪聲。這一傳感器固有噪聲代表的是陀螺儀在靜態(tài)慣性(無(wú)轉(zhuǎn)動(dòng))和環(huán)境條件(無(wú)振動(dòng)、沖擊等)下運(yùn)行時(shí)其輸出中的隨機(jī)振動(dòng)。MEMS 陀螺儀數(shù)據(jù)手冊(cè)中用來(lái)描述噪聲特性的最常見(jiàn)指標(biāo)是速率噪聲密度 (RND) 和角向隨機(jī)游動(dòng) (ARW) 。RND參數(shù)通常 以°/sec/ Hz為單位,根據(jù)該參數(shù)和陀螺儀的頻率響應(yīng),可以簡(jiǎn)單地預(yù)測(cè)角速率方面的總噪聲。ARW參數(shù)通常以°/ hr(小 時(shí))為單位,當(dāng)分析特定期間內(nèi)噪聲對(duì)角度估計(jì)的影響時(shí),該參數(shù)常常更有用。公式2是根據(jù)角速率測(cè)量來(lái)估計(jì)角度的一 般公式。此外,它還提供了一個(gè)將RND參數(shù)與ARW參數(shù)關(guān)聯(lián)起來(lái)的簡(jiǎn)單公式。此關(guān)系式與IEEE-STD-952-1997(附錄C) 中的關(guān)系式相比有很小的改動(dòng)(前者是單邊FFT,后者是雙邊FFT)。
圖3是一個(gè)圖形參考,有助于我們進(jìn)一步討論ARW參數(shù)代表 的特性。圖中的綠色虛線代表陀螺儀RND為0.004°/sec/ Hz時(shí)的ARW特性,相當(dāng)于0.17°/ hr的ARW。實(shí)線代表此陀螺儀輸出在25 ms周期內(nèi)的六個(gè)獨(dú)立積分。角向誤差相對(duì)于時(shí)間的隨機(jī)性表明,ARW的主要作用是估計(jì)特定積分時(shí)間內(nèi)的角向誤差統(tǒng)計(jì)分布。另請(qǐng)注意,此類響應(yīng)假設(shè)利用高通濾波來(lái)消除積分過(guò)程中的偏置誤差。
圖3. 角向隨機(jī)游動(dòng) (ADIS16460)。
回過(guò)頭看圖2中的應(yīng)用示例,將公式1和公式2結(jié)合便可把重要標(biāo)準(zhǔn)(檢查表面上的物理失真)與MEMS陀螺儀數(shù)據(jù)手冊(cè)通常會(huì)提供的噪聲性能指標(biāo)(RND、ARW)關(guān)聯(lián)起來(lái)。在此過(guò)程中,假設(shè)公式1中的積分時(shí)間 (τ) 等于圖像捕捉時(shí)間可提供進(jìn)一步且很有用的簡(jiǎn)化。公式3利用公式1中的一般關(guān)系來(lái)估 計(jì),當(dāng)攝像頭距檢查表面1米 (D) 且最大容許失真誤差為10μm (dRE) 時(shí),陀螺儀的角向誤差 (φRE) 必須小于0.00057°。
公式4將公式3的結(jié)果和公式2中的一般關(guān)系相結(jié)合,用來(lái)預(yù)測(cè)特定情況下對(duì)MEMS陀螺儀的ARW和RND要求。該過(guò)程假設(shè)圖像捕捉時(shí)間35 ms等于公式2中的積分時(shí)間 (τ),因而可以預(yù) 測(cè),為了達(dá)到要求,陀螺儀的ARW需要小于0.18°/ hr,或者RND必須小于0.0043°/sec/ Hz。當(dāng)然,這可能不是這些參數(shù)支持的唯一要求,但這些簡(jiǎn)單的關(guān)系提供了一個(gè)例子,告訴我們?nèi)绾螌⑵渑c已知要求和條件聯(lián)系起來(lái)。
角速率噪聲與帶寬
提供連續(xù)指向控制的系統(tǒng)開(kāi)發(fā)者可能更愿意從角速率方面來(lái)評(píng)估噪聲影響,因?yàn)樗麄兛赡軟](méi)有固定的積分時(shí)間來(lái)利用基于ARW的關(guān)系。從角速率方面評(píng)估噪聲常常要考慮RND參數(shù)和陀螺儀信號(hào)鏈的頻率響應(yīng)。對(duì)陀螺儀頻率響應(yīng)影響最大的常常是濾波,其支持環(huán)路穩(wěn)定標(biāo)準(zhǔn)的專用要求,并能抑制對(duì) 環(huán)境威脅(如振動(dòng))的不相干傳感器響應(yīng)。公式5給出了一種簡(jiǎn)單方法來(lái)估算與特定頻率響應(yīng)(噪聲帶寬)和RND相關(guān)的 噪聲。
當(dāng)RND的頻率響應(yīng)遵循單極點(diǎn)或雙極點(diǎn)低通濾波器曲線時(shí), 噪聲帶寬 (fNBW) 和濾波器截止頻率 (fC) 將有公式6的關(guān)系。
例如,對(duì)于RND為0.004°/sec/ Hz的ADXRS290,圖4提供了其噪聲的兩條不同頻譜曲線。圖中的黑色曲線代表使用雙極點(diǎn)低通濾波器(截止頻率為200 Hz)時(shí)的噪聲響應(yīng),藍(lán)色曲 線代表使用單極點(diǎn)低通濾波器(截止頻率為20 Hz)時(shí)的噪聲響應(yīng)。公式7計(jì)算了各濾波器的總噪聲。同預(yù)期一致,200 Hz 版本的噪聲高于20 Hz版本。
圖4. 使用濾波器時(shí)的ADXRS290噪聲密度。
若系統(tǒng)需要定制濾波,其頻率響應(yīng) (HDF(f)) 不符合公式6和7中的簡(jiǎn)單單極點(diǎn)和雙極點(diǎn)模型,則可利用公式8提供的更一般關(guān)系來(lái)預(yù)測(cè)總噪聲:
除了會(huì)影響總角速率噪聲以外,陀螺儀濾波器還向總環(huán)路響應(yīng)貢獻(xiàn)相位延遲,這會(huì)直接影響反饋控制系統(tǒng)的另一重要品質(zhì)因素:?jiǎn)挝辉鲆娼辉筋l率時(shí)的相位裕量。公式9用于估計(jì)單位增益交越頻率 (fG) 時(shí)單極點(diǎn)濾波器(fC = 截止頻率)對(duì)控制環(huán)路頻率響應(yīng)產(chǎn)生的相位延遲 (θ)。公式9中的兩個(gè)例子分別是截止頻率為200 Hz和60 Hz的兩個(gè)濾波器在20 Hz單位增益交越頻率時(shí)的相位延遲。這對(duì)相位裕量的影響可能導(dǎo)致要求陀螺儀帶寬比單位增益交越頻率大10倍,因而會(huì)更偏向于選擇RND較佳的MEMS陀螺儀。
現(xiàn)代控制系統(tǒng)常常使用數(shù)字濾波器,可能使用不同的模型來(lái)預(yù)測(cè)其在控制環(huán)路關(guān)鍵頻率時(shí)的相位延遲。例如,公式10用于預(yù)測(cè)一個(gè)16抽頭FIR濾波器 (NTAP) 的相位延遲 (θ),其以 4250 SPS (fS) 的更新速率( ADXRS290 )運(yùn)行,單位增益交越頻率 (fG) 同樣是20 Hz。此類關(guān)系有助于確定一個(gè)系統(tǒng)架構(gòu)對(duì)此類濾波器結(jié)構(gòu)容許的總抽頭數(shù)。
結(jié)論
根本問(wèn)題是角速率反饋環(huán)路中的噪聲可能直接影響運(yùn)動(dòng)控制系統(tǒng)的關(guān)鍵性能標(biāo)準(zhǔn),因此,在設(shè)計(jì)新系統(tǒng)的過(guò)程中,應(yīng)當(dāng)盡早予以考慮。相比于僅知道需要低噪聲的人,能夠量化角速率噪聲對(duì)系統(tǒng)特性影響的人將擁有明顯的優(yōu)勢(shì)。他們將能確定性能目標(biāo),在應(yīng)用中產(chǎn)生可觀測(cè)的值;當(dāng)其他項(xiàng)目目標(biāo) 支持考慮特定MEMS陀螺儀時(shí),他們將能有效地量化其對(duì)系統(tǒng)的影響后果。一旦有了這種基本理解,系統(tǒng)設(shè)計(jì)師便可專 注于確定能夠滿足性能要求的MEMS陀螺儀,利用帶寬、速率噪聲密度或角向隨機(jī)游動(dòng)來(lái)指導(dǎo)其考慮。當(dāng)他們期望優(yōu)化 所選傳感器的噪聲性能時(shí),可以利用其與帶寬(角速率噪聲)和積分時(shí)間(角誤差)的關(guān)系來(lái)推動(dòng)界定其他重要的系 統(tǒng)級(jí)特性,從而支持對(duì)應(yīng)用最合適的性能。
關(guān)于作者
Mark Looney是ADI公司(美國(guó)北卡羅來(lái)納州格林斯博羅)的MEMS和傳感器產(chǎn)品線應(yīng)用工程師。自1998年加入ADI公司以來(lái),他在傳感器信號(hào)處理、高速模數(shù)轉(zhuǎn)換器和DC-DC電源轉(zhuǎn)換領(lǐng)域積累了豐富的工作經(jīng)驗(yàn)。他擁有內(nèi)華達(dá)州大學(xué)雷諾分校電子工程專業(yè)學(xué)士和碩士學(xué)位,曾發(fā)表過(guò)數(shù)篇有關(guān)在工業(yè)應(yīng)用中運(yùn)用MEMS技術(shù)的文章。
新型超磁致伸縮智能材料在大行程、大功率、低電壓驅(qū)動(dòng)等方面具有顯著的優(yōu)越性。本項(xiàng)目針對(duì)高精度超磁致伸縮驅(qū)動(dòng)器熱變形控制難題,開(kāi)展了超磁致伸縮驅(qū)動(dòng)器熱變形控制新方法研究,提出相變水冷復(fù)合恒溫構(gòu)件的新概念及綜合利用相變材料潛熱特性和強(qiáng)制水冷對(duì)流換熱特點(diǎn)實(shí)現(xiàn)該構(gòu)件的新構(gòu)思, 研究超磁致伸縮驅(qū)動(dòng)器熱特性,建立揭示其機(jī)電磁之間耦合關(guān)系的多場(chǎng)耦合計(jì)算模型;提出超磁致伸縮驅(qū)動(dòng)器GMA熱變形控制簡(jiǎn)化強(qiáng)制水冷相變和直接液體冷卻溫控方法,建立了流-固耦合傳熱模型和全閉環(huán)串級(jí)溫度控制策略,并研制了其溫控模擬試驗(yàn)裝置;構(gòu)建了基于遺傳算法的嵌入式超磁致伸縮驅(qū)動(dòng)器GMA多目標(biāo)優(yōu)化設(shè)計(jì)模型;提出一種基于正交建模的智能空間柔順構(gòu)件多目標(biāo)優(yōu)化方法;建立了用于異形孔精密加工的超磁致伸縮構(gòu)件微位移線性化遲滯建模和滑??刂品椒?,并基于線圈阻抗動(dòng)態(tài)測(cè)量原理提出了GMM變磁導(dǎo)率自傳感模型。在此基礎(chǔ)上,以非圓復(fù)雜型面精密加工微進(jìn)給驅(qū)動(dòng)為應(yīng)用背景,根據(jù)上述優(yōu)化設(shè)計(jì)方法,設(shè)計(jì)制作了非圓加工微進(jìn)給驅(qū)動(dòng)GMA,構(gòu)建了基于虛擬儀器技術(shù)的高精度超磁致伸縮驅(qū)動(dòng)器GMA綜合特性測(cè)控實(shí)驗(yàn)平臺(tái),并通過(guò)機(jī)電磁熱靜動(dòng)態(tài)特性測(cè)試實(shí)驗(yàn)驗(yàn)證了所建模型和方法的有效性,該綜合特性測(cè)控平臺(tái)的建立為超磁致伸縮驅(qū)動(dòng)器的性能分析提供了基礎(chǔ)實(shí)驗(yàn)裝備。本項(xiàng)目研究已圓滿完成項(xiàng)目所要求的研究目標(biāo),已發(fā)表論文15篇,其中SCI收錄1篇,EI收錄8篇;共申請(qǐng)專利9項(xiàng),已授權(quán)7項(xiàng),其中發(fā)明專利授權(quán)4項(xiàng);實(shí)用新型專利授權(quán)3項(xiàng)。相關(guān)研究成果既可為研究開(kāi)發(fā)高精度超磁致伸縮驅(qū)動(dòng)器提供關(guān)鍵技術(shù),又可為后續(xù)研究提供重要的理論基礎(chǔ)。 2100433B