公司名稱 | 概創(chuàng)機(jī)械設(shè)計(jì)(上海)有限公司 | 外文名 | ConceptsNREC |
---|---|---|---|
總部地點(diǎn) | 美國(guó)佛蒙特州白水河市 | 成立時(shí)間 | 2000年 |
經(jīng)營(yíng)范圍 | 透平機(jī)械研發(fā)一體化解決方案 |
Concepts NREC是世界上唯一一個(gè)集設(shè)計(jì)、分析、加工于一體的研發(fā)平臺(tái),可用于各種葉輪機(jī)械包括壓縮機(jī)、渦輪增壓器、膨脹機(jī)、葉片泵等產(chǎn)品。軟件集成了Concepts NREC公司50多年的工程設(shè)計(jì)經(jīng)驗(yàn)。主要功能包括:
a.總體方案、一維方案設(shè)計(jì)
b.三維詳細(xì)設(shè)計(jì)和全三元流CFD分析
c.有限元應(yīng)力和振動(dòng)分析
d.軸承設(shè)計(jì)和轉(zhuǎn)子動(dòng)力學(xué)分析?
e.多學(xué)科多目標(biāo)優(yōu)化設(shè)計(jì)軟件f.直紋面?zhèn)热屑庸ぁ⒆杂汕纥c(diǎn)加工和閉式葉輪整體銑削專業(yè)軟件
軟件具體模塊名稱及功能簡(jiǎn)介如下:
離心/斜流壓氣機(jī)設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:COMPAL
葉片泵設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:PUMPAL
風(fēng)機(jī)/風(fēng)扇設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:FANPAL
徑流渦輪設(shè)計(jì)及性能預(yù)測(cè)程序:RITAL
軸流壓氣機(jī)/渦輪設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:AXIAL
三維流道和葉片幾何設(shè)計(jì),快速交互式流場(chǎng)分析和通流計(jì)算程序:AxCent·
從其它三維CAD軟件的葉輪數(shù)據(jù)輸入接口:CADTranslator·
快速設(shè)計(jì)級(jí)CFD程序:PushbuttonCFD
自動(dòng)FEA前后處理程序及解算程序:PushbuttonFEA
高溫渦輪氣冷葉片設(shè)計(jì)分析系統(tǒng):CTAADS
多學(xué)科自動(dòng)優(yōu)化接口程序:TurboOptII
轉(zhuǎn)子動(dòng)力學(xué)及軸承分析軟件:DyRoBeS·
葉輪零件整體數(shù)控加工自動(dòng)數(shù)控編程軟件:MAX-PAC
ConceptsNREC公司業(yè)務(wù)遍布世界各地,客戶數(shù)量超過(guò)400家,包括知名的制造廠商、政府科研部門、工程協(xié)會(huì)、研究所和高校等。
應(yīng)用行業(yè)包括航空發(fā)動(dòng)機(jī)、燃?xì)廨啓C(jī)、汽輪機(jī)、火箭渦輪泵、渦輪增壓器、壓縮機(jī)、透平膨脹機(jī)、能量回收裝置、各種葉片泵和風(fēng)機(jī)等產(chǎn)品領(lǐng)域,產(chǎn)品類型可包括徑流、斜流、軸流或組合結(jié)構(gòu),單級(jí)或多級(jí)設(shè)計(jì)。
自1993年進(jìn)入中國(guó)以來(lái),目前國(guó)內(nèi)軟件用戶已經(jīng)超過(guò)80家,涵蓋壓縮/氣機(jī)、渦輪增壓器、風(fēng)機(jī)/鼓風(fēng)機(jī)、透平膨脹機(jī)、葉片泵、汽輪機(jī)、機(jī)床廠、葉輪專業(yè)加工單位等領(lǐng)域。
如沈鼓、金通靈、重通、開山、杭氧、開封空分、寧波博格華納、上?;裟犴f爾、湖南天雁、山東富源、無(wú)錫威孚、萊恩電泵等領(lǐng)域內(nèi)的知名單位。2100433B
Concepts NREC是世界上最著名的葉輪機(jī)械專業(yè)服務(wù)公司(以下簡(jiǎn)稱CN公司)。全世界唯一的既開發(fā)和推廣葉輪機(jī)械設(shè)計(jì)/加工專用(CAE/CAM)軟件,同時(shí)也提供葉輪機(jī)械樣機(jī)開發(fā)和性能測(cè)試的全方位高端服務(wù)公司,當(dāng)前員工總數(shù)130人。
公司前身源于美國(guó)麻省理工學(xué)院的3位科學(xué)家1956年成立的北方研究工程公司(NREC)和美國(guó)工程院院士DaveJapikse博士于1980年成立的ConceptsETI公司。公司分支機(jī)構(gòu)和服務(wù)體系遍布全球各個(gè)主要工業(yè)國(guó)家。
2000年,集成兩家公司原軟件為全新的AgileEngineeringDesignSystem(AEDS)敏捷工程設(shè)計(jì)系統(tǒng),致力于為業(yè)界提供“敏捷設(shè)計(jì)”和“敏捷制造”為宗旨的透平機(jī)械研發(fā)一體化解決方案。
CN具有一支經(jīng)驗(yàn)十分豐富的專家隊(duì)伍,當(dāng)前公司專家團(tuán)隊(duì)曾在諸多著名大公司和研究機(jī)構(gòu)承擔(dān)過(guò)重要型號(hào)或產(chǎn)品研發(fā),包括:GE、NASA、Honeywell、Pratt&Whitney、DR、IR、RR、SolarTurbines、Hamilton、Lycoming、Williams、ARL、AEDC、Flowsever等等。
數(shù)十年研發(fā)持續(xù)積累、強(qiáng)大的專家隊(duì)伍、全球客戶不斷反饋是CN工程咨詢和軟件開發(fā)技術(shù)能力的核心知識(shí)庫(kù)。
CN還具備非常先進(jìn)的樣機(jī)試制和試驗(yàn)臺(tái)位等硬件條件,能夠快速實(shí)現(xiàn)從先進(jìn)設(shè)計(jì)到高精密制造以及性能試驗(yàn)的完整研發(fā)過(guò)程。每年承擔(dān)諸多美國(guó)SBIR,STTR科研項(xiàng)目。公司每年在ASME等學(xué)術(shù)會(huì)議上發(fā)表諸多研究成果論文。
這種家具挺好的,價(jià)格不等,不過(guò)宜家的性價(jià)比還是挺高的,您可以看一下。
據(jù)我了解的話,不管哪個(gè)牌子,劃船器多多少少都是有噪音的哦,只要在挑選的時(shí)候注意一下,concept2劃船器噪音一般般,中等水平哦,給你介紹一下吧 ?第一,劃船的話可以室內(nèi)可以室外的,其實(shí)個(gè)人覺得除了c...
據(jù)我了解的話,不管哪個(gè)牌子,劃船器多多少少都是有噪音的哦,只要在挑選的時(shí)候注意一下,concept2劃船器噪音一般般,中等水平哦,給你介紹一下吧第一,劃船的話可以室內(nèi)可以室外的,其實(shí)個(gè)人覺得除了con...
格式:pdf
大?。?span id="q2gqiau" class="single-tag-height">4.0MB
頁(yè)數(shù): 15頁(yè)
評(píng)分: 4.8
CONCEPTc計(jì)量泵操作手冊(cè)-中文
英文標(biāo)準(zhǔn)名稱: Industrial systems,installations and equipment and industrial products-Structuring principles and reference designations-Part 4:Discussion of concepts
發(fā)布日期 IssuanceDate: 2005-3-3
實(shí)施日期 ExecuteDate: 2005-8-1
首次發(fā)布日期 FirstIssuance Date: 1985-4-18
標(biāo)準(zhǔn)狀態(tài) StandardState: 現(xiàn)行
復(fù)審確認(rèn)日期 ReviewAffirmance Date:
計(jì)劃編號(hào) Plan No: 20030927-T-524
代替國(guó)標(biāo)號(hào) ReplacedStandard:
被代替國(guó)標(biāo)號(hào) ReplacedStandard:
廢止時(shí)間 RevocatoryDate:
采用國(guó)際標(biāo)準(zhǔn)號(hào) AdoptedInternational Standard No: IEC 61346-4:1998
采標(biāo)名稱 AdoptedInternational Standard Name:
采用程度 ApplicationDegree: IDT
采用國(guó)際標(biāo)準(zhǔn) AdoptedInternational Standard: IEC
國(guó)際標(biāo)準(zhǔn)分類號(hào)(ICS): 29.020
中國(guó)標(biāo)準(zhǔn)分類號(hào)(CCS): K04
標(biāo)準(zhǔn)類別 StandardSort: 基礎(chǔ)
標(biāo)準(zhǔn)頁(yè)碼 Number ofPages: 18
標(biāo)準(zhǔn)價(jià)格(元) Price(¥): 13
主管部門 Governor: 國(guó)家標(biāo)準(zhǔn)化管理委員會(huì)
歸口單位 TechnicalCommittees: 全國(guó)電氣信息結(jié)構(gòu)、文件編制和圖形符號(hào)標(biāo)準(zhǔn)化技術(shù)委員會(huì)
起草單位 DraftingCommittee:2100433B
Contents
part one Foundations
chapter one Models and Concepts of Life and Intelligence 3
The Mechanics of Life and Thought 4
Stochastic Adaptation: Is Anything Ever Really Random"para" label-module="para">
The “Two Great Stochastic Systems” 12
The Game of Life: Emergence in Complex Systems 16
The Game of Life 17
Emergence 18
Cellular Automata and the Edge of Chaos 20
Artificial Life in Computer Programs 26
Intelligence: Good Minds in People and Machines 30
Intelligence in People: The Boring Criterion 30
Intelligence in Machines: The Turing Criterion 32
chapter two Symbols, Connections, and Optimization by Trial and Error 35
Symbols in Trees and Networks 36
Problem Solving and Optimization 48
A Super-Simple Optimization Problem 49
Three Spaces of Optimization 51
Fitness Landscapes 52
High-Dimensional Cognitive Space and Word Meanings 55
Two Factors of Complexity: NK Landscapes 60
Combinatorial Optimization 64
Binary Optimization 67
Random and Greedy Searches 71
Hill Climbing 72
Simulated Annealing 73
Binary and Gray Coding 74
Step Sizes and Granularity 75
Optimizing with Real Numbers 77
Summary 78
chapter three On Our Nonexistence as Entities: The Social Organism 81
Views of Evolution 82
Gaia: The Living Earth 83
Differential Selection 86
Our Microscopic Masters"para" label-module="para">
Looking for the Right Zoom Angle 92
Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization 94
Accomplishments of the Social Insects 98
Optimizing with Simulated Ants: Computational Swarm Intelligence 105
Staying Together but Not Colliding: Flocks, Herds, and Schools 109
Robot Societies 115
Shallow Understanding 125
Agency 129
Summary 131
chapter four Evolutionary Computation Theory and Paradigms 133
Introduction 134
Evolutionary Computation History 134
The Four Areas of Evolutionary Computation 135
Genetic Algorithms 135
Evolutionary Programming 139
Evolution Strategies 140
Genetic Programming 141
Toward Unification 141
Evolutionary Computation Overview 142
EC Paradigm Attributes 142
Implementation 143
Genetic Algorithms 146
An Overview 146
A Simple GA Example Problem 147
A Review of GA Operations 152
Schemata and the Schema Theorem 159
Final Comments on Genetic Algorithms 163
Evolutionary Programming 164
The Evolutionary Programming Procedure 165
Finite State Machine Evolution 166
Function Optimization 169
Final Comments 171
Evolution Strategies 172
Mutation 172
Recombination 174
Selection 175
Genetic Programming 179
Summary 185
chapter five Humans—Actual, Imagined, and Implied 187
Studying Minds 188
The Fall of the Behaviorist Empire 193
The Cognitive Revolution 195
Bandura’s Social Learning Paradigm 197
Social Psychology 199
Lewin’s Field Theory 200
Norms, Conformity, and Social Influence 202
Sociocognition 205
Simulating Social Influence 206
Paradigm Shifts in Cognitive Science 210
The Evolution of Cooperation 214
Explanatory Coherence 216
Networks in Groups 218
Culture in Theory and Practice 220
Coordination Games 223
The El Farol Problem 226
Sugarscape 229
Tesfatsion’s ACE 232
Picker’s Competing-Norms Model 233
Latané’s Dynamic Social Impact Theory 235
Boyd and Richerson’s Evolutionary Culture Model 240
Memetics 245
Memetic Algorithms 248
Cultural Algorithms 253
Convergence of Basic and Applied Research 254
Culture—and Life without It 255
Summary 258
chapter six Thinking Is Social 261
Introduction 262
Adaptation on Three Levels 263
The Adaptive Culture Model 263
Axelrod’s Culture Model 265
Experiment One: Similarity in Axelrod’s Model 267
Experiment Two: Optimization of an Arbitrary Function 268
Experiment Three: A Slightly Harder and More Interesting Function 269
Experiment Four: A Hard Function 271
Experiment Five: Parallel Constraint Satisfaction 273
Experiment Six: Symbol Processing 279
Discussion 282
Summary 284
part two The Particle Swarm and Collective Intelligence
chapter seven The Particle Swarm 287
Sociocognitive Underpinnings: Evaluate, Compare, and Imitate 288
Evaluate 288
Compare 288
Imitate 289
A Model of Binary Decision 289
Testing the Binary Algorithm with the De Jong Test Suite 297
No Free Lunch 299
Multimodality 302
Minds as Parallel Constraint Satisfaction Networks in Cultures 307
The Particle Swarm in Continuous Numbers 309
The Particle Swarm in Real-Number Space 309
Pseudocode for Particle Swarm Optimization in Continuous Numbers 313
Implementation Issues 314
An Example: Particle Swarm Optimization of Neural Net Weights 314
A Real-World Application 318
The Hybrid Particle Swarm 319
Science as Collaborative Search 320
Emergent Culture, Immergent Intelligence 323
Summary 324
chapter eight Variations and Comparisons 327
Variations of the Particle Swarm Paradigm 328
Parameter Selection 328
Controlling the Explosion 337
Particle Interactions 342
Neighborhood Topology 343
Substituting Cluster Centers for Previous Bests 347
Adding Selection to Particle Swarms 353
Comparing Inertia Weights and Constriction Factors 354
Asymmetric Initialization 357
Some Thoughts on Variations 359
Are Particle Swarms Really a Kind of Evolutionary Algorithm"para" label-module="para">
Evolution beyond Darwin 362
Selection and Self-Organization 363
Ergodicity: Where Can It Get from Here"para" label-module="para">
Convergence of Evolutionary Computation and Particle Swarms 367
Summary 368
chapter nine Applications 369
Evolving Neural Networks with Particle Swarms 370
Review of Previous Work 370
Advantages and Disadvantages of Previous Approaches 374
The Particle Swarm Optimization Implementation Used Here 376
Implementing Neural Network Evolution 377
An Example Application 379
Conclusions 381
Human Tremor Analysis 382
Data Acquisition Using Actigraphy 383
Data Preprocessing 385
Analysis with Particle Swarm Optimization 386
Summary 389
Other Applications 389
Computer Numerically Controlled Milling Optimization 389
Ingredient Mix Optimization 391
Reactive Power and Voltage Control 391
Battery Pack State-of-Charge Estimation 391
Summary 392
chapter ten Implications and Speculations 393
Introduction 394
Assertions 395
Up from Social Learning: Bandura 398
Information and Motivation 399
Vicarious versus Direct Experience 399
The Spread of Influence 400
Machine Adaptation 401
Learning or Adaptation"para" label-module="para">
Cellular Automata 403
Down from Culture 405
Soft Computing 408
Interaction within Small Groups: Group Polarization 409
Informational and Normative Social Influence 411
Self-Esteem 412
Self-Attribution and Social Illusion 414
Summary 419
chapter eleven And in Conclusion . . . 421
Appendix A Statistics for Swarmers 429
Appendix B Genetic Algorithm Implementation 451
Glossary 457
References 475
Index 4972100433B
part one Foundations
chapter one Models and Concepts of Life and Intelligence 3
The Mechanics of Life and Thought 4
Stochastic Adaptation: Is Anything Ever Really Random"para" label-module="para">
The “Two Great Stochastic Systems” 12
The Game of Life: Emergence in Complex Systems 16
The Game of Life 17
Emergence 18
Cellular Automata and the Edge of Chaos 20
Artificial Life in Computer Programs 26
Intelligence: Good Minds in People and Machines 30
Intelligence in People: The Boring Criterion 30
Intelligence in Machines: The Turing Criterion 32
chapter two Symbols, Connections, and Optimization by Trial and Error 35
Symbols in Trees and Networks 36
Problem Solving and Optimization 48
A Super-Simple Optimization Problem 49
Three Spaces of Optimization 51
Fitness Landscapes 52
High-Dimensional Cognitive Space and Word Meanings 55
Two Factors of Complexity: NK Landscapes 60
Combinatorial Optimization 64
Binary Optimization 67
Random and Greedy Searches 71
Hill Climbing 72
Simulated Annealing 73
Binary and Gray Coding 74
Step Sizes and Granularity 75
Optimizing with Real Numbers 77
Summary 78
chapter three On Our Nonexistence as Entities: The Social Organism 81
Views of Evolution 82
Gaia: The Living Earth 83
Differential Selection 86
Our Microscopic Masters"para" label-module="para">
Looking for the Right Zoom Angle 92
Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization 94
Accomplishments of the Social Insects 98
Optimizing with Simulated Ants: Computational Swarm Intelligence 105
Staying Together but Not Colliding: Flocks, Herds, and Schools 109
Robot Societies 115
Shallow Understanding 125
Agency 129
Summary 131
chapter four Evolutionary Computation Theory and Paradigms 133
Introduction 134
Evolutionary Computation History 134
The Four Areas of Evolutionary Computation 135
Genetic Algorithms 135
Evolutionary Programming 139
Evolution Strategies 140
Genetic Programming 141
Toward Unification 141
Evolutionary Computation Overview 142
EC Paradigm Attributes 142
Implementation 143
Genetic Algorithms 146
An Overview 146
A Simple GA Example Problem 147
A Review of GA Operations 152
Schemata and the Schema Theorem 159
Final Comments on Genetic Algorithms 163
Evolutionary Programming 164
The Evolutionary Programming Procedure 165
Finite State Machine Evolution 166
Function Optimization 169
Final Comments 171
Evolution Strategies 172
Mutation 172
Recombination 174
Selection 175
Genetic Programming 179
Summary 185
chapter five Humans—Actual, Imagined, and Implied 187
Studying Minds 188
The Fall of the Behaviorist Empire 193
The Cognitive Revolution 195
Bandura’s Social Learning Paradigm 197
Social Psychology 199
Lewin’s Field Theory 200
Norms, Conformity, and Social Influence 202
Sociocognition 205
Simulating Social Influence 206
Paradigm Shifts in Cognitive Science 210
The Evolution of Cooperation 214
Explanatory Coherence 216
Networks in Groups 218
Culture in Theory and Practice 220
Coordination Games 223
The El Farol Problem 226
Sugarscape 229
Tesfatsion’s ACE 232
Picker’s Competing-Norms Model 233
Latané’s Dynamic Social Impact Theory 235
Boyd and Richerson’s Evolutionary Culture Model 240
Memetics 245
Memetic Algorithms 248
Cultural Algorithms 253
Convergence of Basic and Applied Research 254
Culture—and Life without It 255
Summary 258
chapter six Thinking Is Social 261
Introduction 262
Adaptation on Three Levels 263
The Adaptive Culture Model 263
Axelrod’s Culture Model 265
Experiment One: Similarity in Axelrod’s Model 267
Experiment Two: Optimization of an Arbitrary Function 268
Experiment Three: A Slightly Harder and More Interesting Function 269
Experiment Four: A Hard Function 271
Experiment Five: Parallel Constraint Satisfaction 273
Experiment Six: Symbol Processing 279
Discussion 282
Summary 284
part two The Particle Swarm and Collective Intelligence
chapter seven The Particle Swarm 287
Sociocognitive Underpinnings: Evaluate, Compare, and Imitate 288
Evaluate 288
Compare 288
Imitate 289
A Model of Binary Decision 289
Testing the Binary Algorithm with the De Jong Test Suite 297
No Free Lunch 299
Multimodality 302
Minds as Parallel Constraint Satisfaction Networks in Cultures 307
The Particle Swarm in Continuous Numbers 309
The Particle Swarm in Real-Number Space 309
Pseudocode for Particle Swarm Optimization in Continuous Numbers 313
Implementation Issues 314
An Example: Particle Swarm Optimization of Neural Net Weights 314
A Real-World Application 318
The Hybrid Particle Swarm 319
Science as Collaborative Search 320
Emergent Culture, Immergent Intelligence 323
Summary 324
chapter eight Variations and Comparisons 327
Variations of the Particle Swarm Paradigm 328
Parameter Selection 328
Controlling the Explosion 337
Particle Interactions 342
Neighborhood Topology 343
Substituting Cluster Centers for Previous Bests 347
Adding Selection to Particle Swarms 353
Comparing Inertia Weights and Constriction Factors 354
Asymmetric Initialization 357
Some Thoughts on Variations 359
Are Particle Swarms Really a Kind of Evolutionary Algorithm"para" label-module="para">
Evolution beyond Darwin 362
Selection and Self-Organization 363
Ergodicity: Where Can It Get from Here"para" label-module="para">
Convergence of Evolutionary Computation and Particle Swarms 367
Summary 368
chapter nine Applications 369
Evolving Neural Networks with Particle Swarms 370
Review of Previous Work 370
Advantages and Disadvantages of Previous Approaches 374
The Particle Swarm Optimization Implementation Used Here 376
Implementing Neural Network Evolution 377
An Example Application 379
Conclusions 381
Human Tremor Analysis 382
Data Acquisition Using Actigraphy 383
Data Preprocessing 385
Analysis with Particle Swarm Optimization 386
Summary 389
Other Applications 389
Computer Numerically Controlled Milling Optimization 389
Ingredient Mix Optimization 391
Reactive Power and Voltage Control 391
Battery Pack State-of-Charge Estimation 391
Summary 392
chapter ten Implications and Speculations 393
Introduction 394
Assertions 395
Up from Social Learning: Bandura 398
Information and Motivation 399
Vicarious versus Direct Experience 399
The Spread of Influence 400
Machine Adaptation 401
Learning or Adaptation"para" label-module="para">
Cellular Automata 403
Down from Culture 405
Soft Computing 408
Interaction within Small Groups: Group Polarization 409
Informational and Normative Social Influence 411
Self-Esteem 412
Self-Attribution and Social Illusion 414
Summary 419
chapter eleven And in Conclusion . . . 421
Appendix A Statistics for Swarmers 429
Appendix B Genetic Algorithm Implementation 451
Glossary 457
References 475
Index 497
……2100433B