Concepts NREC

Concepts NREC是世界上著名的葉輪機(jī)械專業(yè)服務(wù)公司(以下簡(jiǎn)稱CN公司);是一家既開發(fā)和推廣葉輪機(jī)械設(shè)計(jì)/加工專用(CAE/CAM)軟件,同時(shí)也提供葉輪機(jī)械樣機(jī)開發(fā)和性能測(cè)試的全方位高端服務(wù)公司。

Concepts NREC基本信息

公司名稱 概創(chuàng)機(jī)械設(shè)計(jì)(上海)有限公司 外文名 ConceptsNREC
總部地點(diǎn) 美國(guó)佛蒙特州白水河市 成立時(shí)間 2000年
經(jīng)營(yíng)范圍 透平機(jī)械研發(fā)一體化解決方案

Concepts NREC是世界上唯一一個(gè)集設(shè)計(jì)、分析、加工于一體的研發(fā)平臺(tái),可用于各種葉輪機(jī)械包括壓縮機(jī)、渦輪增壓器、膨脹機(jī)、葉片泵等產(chǎn)品。軟件集成了Concepts NREC公司50多年的工程設(shè)計(jì)經(jīng)驗(yàn)。主要功能包括:

a.總體方案、一維方案設(shè)計(jì)

b.三維詳細(xì)設(shè)計(jì)和全三元流CFD分析

c.有限元應(yīng)力和振動(dòng)分析

d.軸承設(shè)計(jì)和轉(zhuǎn)子動(dòng)力學(xué)分析?

e.多學(xué)科多目標(biāo)優(yōu)化設(shè)計(jì)軟件f.直紋面?zhèn)热屑庸ぁ⒆杂汕纥c(diǎn)加工和閉式葉輪整體銑削專業(yè)軟件

Concepts NREC造價(jià)信息

市場(chǎng)價(jià) 信息價(jià) 詢價(jià)
材料名稱 規(guī)格/型號(hào) 市場(chǎng)價(jià)
(除稅)
工程建議價(jià)
(除稅)
行情 品牌 單位 稅率 供應(yīng)商 報(bào)價(jià)日期
暫無(wú)數(shù)據(jù)
材料名稱 規(guī)格/型號(hào) 除稅
信息價(jià)
含稅
信息價(jià)
行情 品牌 單位 稅率 地區(qū)/時(shí)間
暫無(wú)數(shù)據(jù)
材料名稱 規(guī)格/需求量 報(bào)價(jià)數(shù) 最新報(bào)價(jià)
(元)
供應(yīng)商 報(bào)價(jià)地區(qū) 最新報(bào)價(jià)時(shí)間
暫無(wú)數(shù)據(jù)

軟件具體模塊名稱及功能簡(jiǎn)介如下:

離心/斜流壓氣機(jī)設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:COMPAL

葉片泵設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:PUMPAL

風(fēng)機(jī)/風(fēng)扇設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:FANPAL

徑流渦輪設(shè)計(jì)及性能預(yù)測(cè)程序:RITAL

軸流壓氣機(jī)/渦輪設(shè)計(jì)點(diǎn)及非設(shè)計(jì)點(diǎn)平均流線性能預(yù)測(cè)程序:AXIAL

三維流道和葉片幾何設(shè)計(jì),快速交互式流場(chǎng)分析和通流計(jì)算程序:AxCent·

從其它三維CAD軟件的葉輪數(shù)據(jù)輸入接口:CADTranslator·

快速設(shè)計(jì)級(jí)CFD程序:PushbuttonCFD

自動(dòng)FEA前后處理程序及解算程序:PushbuttonFEA

高溫渦輪氣冷葉片設(shè)計(jì)分析系統(tǒng):CTAADS

多學(xué)科自動(dòng)優(yōu)化接口程序:TurboOptII

轉(zhuǎn)子動(dòng)力學(xué)及軸承分析軟件:DyRoBeS·

葉輪零件整體數(shù)控加工自動(dòng)數(shù)控編程軟件:MAX-PAC

Concepts NREC軟件用戶群

ConceptsNREC公司業(yè)務(wù)遍布世界各地,客戶數(shù)量超過(guò)400家,包括知名的制造廠商、政府科研部門、工程協(xié)會(huì)、研究所和高校等。

應(yīng)用行業(yè)包括航空發(fā)動(dòng)機(jī)、燃?xì)廨啓C(jī)、汽輪機(jī)、火箭渦輪泵、渦輪增壓器、壓縮機(jī)、透平膨脹機(jī)、能量回收裝置、各種葉片泵和風(fēng)機(jī)等產(chǎn)品領(lǐng)域,產(chǎn)品類型可包括徑流、斜流、軸流或組合結(jié)構(gòu),單級(jí)或多級(jí)設(shè)計(jì)。

Concepts NREC中國(guó)用戶

自1993年進(jìn)入中國(guó)以來(lái),目前國(guó)內(nèi)軟件用戶已經(jīng)超過(guò)80家,涵蓋壓縮/氣機(jī)、渦輪增壓器、風(fēng)機(jī)/鼓風(fēng)機(jī)、透平膨脹機(jī)、葉片泵、汽輪機(jī)、機(jī)床廠、葉輪專業(yè)加工單位等領(lǐng)域。

如沈鼓、金通靈、重通、開山、杭氧、開封空分、寧波博格華納、上?;裟犴f爾、湖南天雁、山東富源、無(wú)錫威孚、萊恩電泵等領(lǐng)域內(nèi)的知名單位。2100433B

Concepts NREC是世界上最著名的葉輪機(jī)械專業(yè)服務(wù)公司(以下簡(jiǎn)稱CN公司)。全世界唯一的既開發(fā)和推廣葉輪機(jī)械設(shè)計(jì)/加工專用(CAE/CAM)軟件,同時(shí)也提供葉輪機(jī)械樣機(jī)開發(fā)和性能測(cè)試的全方位高端服務(wù)公司,當(dāng)前員工總數(shù)130人。

公司前身源于美國(guó)麻省理工學(xué)院的3位科學(xué)家1956年成立的北方研究工程公司(NREC)和美國(guó)工程院院士DaveJapikse博士于1980年成立的ConceptsETI公司。公司分支機(jī)構(gòu)和服務(wù)體系遍布全球各個(gè)主要工業(yè)國(guó)家。

2000年,集成兩家公司原軟件為全新的AgileEngineeringDesignSystem(AEDS)敏捷工程設(shè)計(jì)系統(tǒng),致力于為業(yè)界提供“敏捷設(shè)計(jì)”和“敏捷制造”為宗旨的透平機(jī)械研發(fā)一體化解決方案。

CN具有一支經(jīng)驗(yàn)十分豐富的專家隊(duì)伍,當(dāng)前公司專家團(tuán)隊(duì)曾在諸多著名大公司和研究機(jī)構(gòu)承擔(dān)過(guò)重要型號(hào)或產(chǎn)品研發(fā),包括:GE、NASA、Honeywell、Pratt&Whitney、DR、IR、RR、SolarTurbines、Hamilton、Lycoming、Williams、ARL、AEDC、Flowsever等等。

數(shù)十年研發(fā)持續(xù)積累、強(qiáng)大的專家隊(duì)伍、全球客戶不斷反饋是CN工程咨詢和軟件開發(fā)技術(shù)能力的核心知識(shí)庫(kù)。

CN還具備非常先進(jìn)的樣機(jī)試制和試驗(yàn)臺(tái)位等硬件條件,能夠快速實(shí)現(xiàn)從先進(jìn)設(shè)計(jì)到高精密制造以及性能試驗(yàn)的完整研發(fā)過(guò)程。每年承擔(dān)諸多美國(guó)SBIR,STTR科研項(xiàng)目。公司每年在ASME等學(xué)術(shù)會(huì)議上發(fā)表諸多研究成果論文。

Concepts NREC常見問(wèn)題

  • boconcept北歐風(fēng)情怎么樣?

    這種家具挺好的,價(jià)格不等,不過(guò)宜家的性價(jià)比還是挺高的,您可以看一下。

  • concept2劃船器噪音大么

    據(jù)我了解的話,不管哪個(gè)牌子,劃船器多多少少都是有噪音的哦,只要在挑選的時(shí)候注意一下,concept2劃船器噪音一般般,中等水平哦,給你介紹一下吧 ?第一,劃船的話可以室內(nèi)可以室外的,其實(shí)個(gè)人覺得除了c...

  • concept2劃船器噪音大么

    據(jù)我了解的話,不管哪個(gè)牌子,劃船器多多少少都是有噪音的哦,只要在挑選的時(shí)候注意一下,concept2劃船器噪音一般般,中等水平哦,給你介紹一下吧第一,劃船的話可以室內(nèi)可以室外的,其實(shí)個(gè)人覺得除了con...

Concepts NREC文獻(xiàn)

CONCEPTc計(jì)量泵操作手冊(cè)-中文 CONCEPTc計(jì)量泵操作手冊(cè)-中文

格式:pdf

大?。?span id="q2gqiau" class="single-tag-height">4.0MB

頁(yè)數(shù): 15頁(yè)

評(píng)分: 4.8

CONCEPTc計(jì)量泵操作手冊(cè)-中文

立即下載

英文標(biāo)準(zhǔn)名稱: Industrial systems,installations and equipment and industrial products-Structuring principles and reference designations-Part 4:Discussion of concepts

發(fā)布日期 IssuanceDate: 2005-3-3

實(shí)施日期 ExecuteDate: 2005-8-1

首次發(fā)布日期 FirstIssuance Date: 1985-4-18

標(biāo)準(zhǔn)狀態(tài) StandardState: 現(xiàn)行

復(fù)審確認(rèn)日期 ReviewAffirmance Date:

計(jì)劃編號(hào) Plan No: 20030927-T-524

代替國(guó)標(biāo)號(hào) ReplacedStandard:

被代替國(guó)標(biāo)號(hào) ReplacedStandard:

廢止時(shí)間 RevocatoryDate:

采用國(guó)際標(biāo)準(zhǔn)號(hào) AdoptedInternational Standard No: IEC 61346-4:1998

采標(biāo)名稱 AdoptedInternational Standard Name:

采用程度 ApplicationDegree: IDT

采用國(guó)際標(biāo)準(zhǔn) AdoptedInternational Standard: IEC

國(guó)際標(biāo)準(zhǔn)分類號(hào)(ICS): 29.020

中國(guó)標(biāo)準(zhǔn)分類號(hào)(CCS): K04

標(biāo)準(zhǔn)類別 StandardSort: 基礎(chǔ)

標(biāo)準(zhǔn)頁(yè)碼 Number ofPages: 18

標(biāo)準(zhǔn)價(jià)格(元) Price(¥): 13

主管部門 Governor: 國(guó)家標(biāo)準(zhǔn)化管理委員會(huì)

歸口單位 TechnicalCommittees: 全國(guó)電氣信息結(jié)構(gòu)、文件編制和圖形符號(hào)標(biāo)準(zhǔn)化技術(shù)委員會(huì)

起草單位 DraftingCommittee:2100433B

Contents

part one Foundations

chapter one Models and Concepts of Life and Intelligence 3

The Mechanics of Life and Thought 4

Stochastic Adaptation: Is Anything Ever Really Random"para" label-module="para">

The “Two Great Stochastic Systems” 12

The Game of Life: Emergence in Complex Systems 16

The Game of Life 17

Emergence 18

Cellular Automata and the Edge of Chaos 20

Artificial Life in Computer Programs 26

Intelligence: Good Minds in People and Machines 30

Intelligence in People: The Boring Criterion 30

Intelligence in Machines: The Turing Criterion 32

chapter two Symbols, Connections, and Optimization by Trial and Error 35

Symbols in Trees and Networks 36

Problem Solving and Optimization 48

A Super-Simple Optimization Problem 49

Three Spaces of Optimization 51

Fitness Landscapes 52

High-Dimensional Cognitive Space and Word Meanings 55

Two Factors of Complexity: NK Landscapes 60

Combinatorial Optimization 64

Binary Optimization 67

Random and Greedy Searches 71

Hill Climbing 72

Simulated Annealing 73

Binary and Gray Coding 74

Step Sizes and Granularity 75

Optimizing with Real Numbers 77

Summary 78

chapter three On Our Nonexistence as Entities: The Social Organism 81

Views of Evolution 82

Gaia: The Living Earth 83

Differential Selection 86

Our Microscopic Masters"para" label-module="para">

Looking for the Right Zoom Angle 92

Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization 94

Accomplishments of the Social Insects 98

Optimizing with Simulated Ants: Computational Swarm Intelligence 105

Staying Together but Not Colliding: Flocks, Herds, and Schools 109

Robot Societies 115

Shallow Understanding 125

Agency 129

Summary 131

chapter four Evolutionary Computation Theory and Paradigms 133

Introduction 134

Evolutionary Computation History 134

The Four Areas of Evolutionary Computation 135

Genetic Algorithms 135

Evolutionary Programming 139

Evolution Strategies 140

Genetic Programming 141

Toward Unification 141

Evolutionary Computation Overview 142

EC Paradigm Attributes 142

Implementation 143

Genetic Algorithms 146

An Overview 146

A Simple GA Example Problem 147

A Review of GA Operations 152

Schemata and the Schema Theorem 159

Final Comments on Genetic Algorithms 163

Evolutionary Programming 164

The Evolutionary Programming Procedure 165

Finite State Machine Evolution 166

Function Optimization 169

Final Comments 171

Evolution Strategies 172

Mutation 172

Recombination 174

Selection 175

Genetic Programming 179

Summary 185

chapter five Humans—Actual, Imagined, and Implied 187

Studying Minds 188

The Fall of the Behaviorist Empire 193

The Cognitive Revolution 195

Bandura’s Social Learning Paradigm 197

Social Psychology 199

Lewin’s Field Theory 200

Norms, Conformity, and Social Influence 202

Sociocognition 205

Simulating Social Influence 206

Paradigm Shifts in Cognitive Science 210

The Evolution of Cooperation 214

Explanatory Coherence 216

Networks in Groups 218

Culture in Theory and Practice 220

Coordination Games 223

The El Farol Problem 226

Sugarscape 229

Tesfatsion’s ACE 232

Picker’s Competing-Norms Model 233

Latané’s Dynamic Social Impact Theory 235

Boyd and Richerson’s Evolutionary Culture Model 240

Memetics 245

Memetic Algorithms 248

Cultural Algorithms 253

Convergence of Basic and Applied Research 254

Culture—and Life without It 255

Summary 258

chapter six Thinking Is Social 261

Introduction 262

Adaptation on Three Levels 263

The Adaptive Culture Model 263

Axelrod’s Culture Model 265

Experiment One: Similarity in Axelrod’s Model 267

Experiment Two: Optimization of an Arbitrary Function 268

Experiment Three: A Slightly Harder and More Interesting Function 269

Experiment Four: A Hard Function 271

Experiment Five: Parallel Constraint Satisfaction 273

Experiment Six: Symbol Processing 279

Discussion 282

Summary 284

part two The Particle Swarm and Collective Intelligence

chapter seven The Particle Swarm 287

Sociocognitive Underpinnings: Evaluate, Compare, and Imitate 288

Evaluate 288

Compare 288

Imitate 289

A Model of Binary Decision 289

Testing the Binary Algorithm with the De Jong Test Suite 297

No Free Lunch 299

Multimodality 302

Minds as Parallel Constraint Satisfaction Networks in Cultures 307

The Particle Swarm in Continuous Numbers 309

The Particle Swarm in Real-Number Space 309

Pseudocode for Particle Swarm Optimization in Continuous Numbers 313

Implementation Issues 314

An Example: Particle Swarm Optimization of Neural Net Weights 314

A Real-World Application 318

The Hybrid Particle Swarm 319

Science as Collaborative Search 320

Emergent Culture, Immergent Intelligence 323

Summary 324

chapter eight Variations and Comparisons 327

Variations of the Particle Swarm Paradigm 328

Parameter Selection 328

Controlling the Explosion 337

Particle Interactions 342

Neighborhood Topology 343

Substituting Cluster Centers for Previous Bests 347

Adding Selection to Particle Swarms 353

Comparing Inertia Weights and Constriction Factors 354

Asymmetric Initialization 357

Some Thoughts on Variations 359

Are Particle Swarms Really a Kind of Evolutionary Algorithm"para" label-module="para">

Evolution beyond Darwin 362

Selection and Self-Organization 363

Ergodicity: Where Can It Get from Here"para" label-module="para">

Convergence of Evolutionary Computation and Particle Swarms 367

Summary 368

chapter nine Applications 369

Evolving Neural Networks with Particle Swarms 370

Review of Previous Work 370

Advantages and Disadvantages of Previous Approaches 374

The Particle Swarm Optimization Implementation Used Here 376

Implementing Neural Network Evolution 377

An Example Application 379

Conclusions 381

Human Tremor Analysis 382

Data Acquisition Using Actigraphy 383

Data Preprocessing 385

Analysis with Particle Swarm Optimization 386

Summary 389

Other Applications 389

Computer Numerically Controlled Milling Optimization 389

Ingredient Mix Optimization 391

Reactive Power and Voltage Control 391

Battery Pack State-of-Charge Estimation 391

Summary 392

chapter ten Implications and Speculations 393

Introduction 394

Assertions 395

Up from Social Learning: Bandura 398

Information and Motivation 399

Vicarious versus Direct Experience 399

The Spread of Influence 400

Machine Adaptation 401

Learning or Adaptation"para" label-module="para">

Cellular Automata 403

Down from Culture 405

Soft Computing 408

Interaction within Small Groups: Group Polarization 409

Informational and Normative Social Influence 411

Self-Esteem 412

Self-Attribution and Social Illusion 414

Summary 419

chapter eleven And in Conclusion . . . 421

Appendix A Statistics for Swarmers 429

Appendix B Genetic Algorithm Implementation 451

Glossary 457

References 475

Index 4972100433B

part one Foundations

chapter one Models and Concepts of Life and Intelligence 3

The Mechanics of Life and Thought 4

Stochastic Adaptation: Is Anything Ever Really Random"para" label-module="para">

The “Two Great Stochastic Systems” 12

The Game of Life: Emergence in Complex Systems 16

The Game of Life 17

Emergence 18

Cellular Automata and the Edge of Chaos 20

Artificial Life in Computer Programs 26

Intelligence: Good Minds in People and Machines 30

Intelligence in People: The Boring Criterion 30

Intelligence in Machines: The Turing Criterion 32

chapter two Symbols, Connections, and Optimization by Trial and Error 35

Symbols in Trees and Networks 36

Problem Solving and Optimization 48

A Super-Simple Optimization Problem 49

Three Spaces of Optimization 51

Fitness Landscapes 52

High-Dimensional Cognitive Space and Word Meanings 55

Two Factors of Complexity: NK Landscapes 60

Combinatorial Optimization 64

Binary Optimization 67

Random and Greedy Searches 71

Hill Climbing 72

Simulated Annealing 73

Binary and Gray Coding 74

Step Sizes and Granularity 75

Optimizing with Real Numbers 77

Summary 78

chapter three On Our Nonexistence as Entities: The Social Organism 81

Views of Evolution 82

Gaia: The Living Earth 83

Differential Selection 86

Our Microscopic Masters"para" label-module="para">

Looking for the Right Zoom Angle 92

Flocks, Herds, Schools, and Swarms: Social Behavior as Optimization 94

Accomplishments of the Social Insects 98

Optimizing with Simulated Ants: Computational Swarm Intelligence 105

Staying Together but Not Colliding: Flocks, Herds, and Schools 109

Robot Societies 115

Shallow Understanding 125

Agency 129

Summary 131

chapter four Evolutionary Computation Theory and Paradigms 133

Introduction 134

Evolutionary Computation History 134

The Four Areas of Evolutionary Computation 135

Genetic Algorithms 135

Evolutionary Programming 139

Evolution Strategies 140

Genetic Programming 141

Toward Unification 141

Evolutionary Computation Overview 142

EC Paradigm Attributes 142

Implementation 143

Genetic Algorithms 146

An Overview 146

A Simple GA Example Problem 147

A Review of GA Operations 152

Schemata and the Schema Theorem 159

Final Comments on Genetic Algorithms 163

Evolutionary Programming 164

The Evolutionary Programming Procedure 165

Finite State Machine Evolution 166

Function Optimization 169

Final Comments 171

Evolution Strategies 172

Mutation 172

Recombination 174

Selection 175

Genetic Programming 179

Summary 185

chapter five Humans—Actual, Imagined, and Implied 187

Studying Minds 188

The Fall of the Behaviorist Empire 193

The Cognitive Revolution 195

Bandura’s Social Learning Paradigm 197

Social Psychology 199

Lewin’s Field Theory 200

Norms, Conformity, and Social Influence 202

Sociocognition 205

Simulating Social Influence 206

Paradigm Shifts in Cognitive Science 210

The Evolution of Cooperation 214

Explanatory Coherence 216

Networks in Groups 218

Culture in Theory and Practice 220

Coordination Games 223

The El Farol Problem 226

Sugarscape 229

Tesfatsion’s ACE 232

Picker’s Competing-Norms Model 233

Latané’s Dynamic Social Impact Theory 235

Boyd and Richerson’s Evolutionary Culture Model 240

Memetics 245

Memetic Algorithms 248

Cultural Algorithms 253

Convergence of Basic and Applied Research 254

Culture—and Life without It 255

Summary 258

chapter six Thinking Is Social 261

Introduction 262

Adaptation on Three Levels 263

The Adaptive Culture Model 263

Axelrod’s Culture Model 265

Experiment One: Similarity in Axelrod’s Model 267

Experiment Two: Optimization of an Arbitrary Function 268

Experiment Three: A Slightly Harder and More Interesting Function 269

Experiment Four: A Hard Function 271

Experiment Five: Parallel Constraint Satisfaction 273

Experiment Six: Symbol Processing 279

Discussion 282

Summary 284

part two The Particle Swarm and Collective Intelligence

chapter seven The Particle Swarm 287

Sociocognitive Underpinnings: Evaluate, Compare, and Imitate 288

Evaluate 288

Compare 288

Imitate 289

A Model of Binary Decision 289

Testing the Binary Algorithm with the De Jong Test Suite 297

No Free Lunch 299

Multimodality 302

Minds as Parallel Constraint Satisfaction Networks in Cultures 307

The Particle Swarm in Continuous Numbers 309

The Particle Swarm in Real-Number Space 309

Pseudocode for Particle Swarm Optimization in Continuous Numbers 313

Implementation Issues 314

An Example: Particle Swarm Optimization of Neural Net Weights 314

A Real-World Application 318

The Hybrid Particle Swarm 319

Science as Collaborative Search 320

Emergent Culture, Immergent Intelligence 323

Summary 324

chapter eight Variations and Comparisons 327

Variations of the Particle Swarm Paradigm 328

Parameter Selection 328

Controlling the Explosion 337

Particle Interactions 342

Neighborhood Topology 343

Substituting Cluster Centers for Previous Bests 347

Adding Selection to Particle Swarms 353

Comparing Inertia Weights and Constriction Factors 354

Asymmetric Initialization 357

Some Thoughts on Variations 359

Are Particle Swarms Really a Kind of Evolutionary Algorithm"para" label-module="para">

Evolution beyond Darwin 362

Selection and Self-Organization 363

Ergodicity: Where Can It Get from Here"para" label-module="para">

Convergence of Evolutionary Computation and Particle Swarms 367

Summary 368

chapter nine Applications 369

Evolving Neural Networks with Particle Swarms 370

Review of Previous Work 370

Advantages and Disadvantages of Previous Approaches 374

The Particle Swarm Optimization Implementation Used Here 376

Implementing Neural Network Evolution 377

An Example Application 379

Conclusions 381

Human Tremor Analysis 382

Data Acquisition Using Actigraphy 383

Data Preprocessing 385

Analysis with Particle Swarm Optimization 386

Summary 389

Other Applications 389

Computer Numerically Controlled Milling Optimization 389

Ingredient Mix Optimization 391

Reactive Power and Voltage Control 391

Battery Pack State-of-Charge Estimation 391

Summary 392

chapter ten Implications and Speculations 393

Introduction 394

Assertions 395

Up from Social Learning: Bandura 398

Information and Motivation 399

Vicarious versus Direct Experience 399

The Spread of Influence 400

Machine Adaptation 401

Learning or Adaptation"para" label-module="para">

Cellular Automata 403

Down from Culture 405

Soft Computing 408

Interaction within Small Groups: Group Polarization 409

Informational and Normative Social Influence 411

Self-Esteem 412

Self-Attribution and Social Illusion 414

Summary 419

chapter eleven And in Conclusion . . . 421

Appendix A Statistics for Swarmers 429

Appendix B Genetic Algorithm Implementation 451

Glossary 457

References 475

Index 497

……2100433B

Concepts NREC相關(guān)推薦
  • 相關(guān)百科
  • 相關(guān)知識(shí)
  • 相關(guān)專欄

最新詞條

安徽省政采項(xiàng)目管理咨詢有限公司 數(shù)字景楓科技發(fā)展(南京)有限公司 懷化市人民政府電子政務(wù)管理辦公室 河北省高速公路京德臨時(shí)籌建處 中石化華東石油工程有限公司工程技術(shù)分公司 手持無(wú)線POS機(jī) 廣東合正采購(gòu)招標(biāo)有限公司 上海城建信息科技有限公司 甘肅鑫禾國(guó)際招標(biāo)有限公司 燒結(jié)金屬材料 齒輪計(jì)量泵 廣州采陽(yáng)招標(biāo)代理有限公司河源分公司 高鋁碳化硅磚 博洛尼智能科技(青島)有限公司 燒結(jié)剛玉磚 深圳市東海國(guó)際招標(biāo)有限公司 搭建香蕉育苗大棚 SF計(jì)量單位 福建省中億通招標(biāo)咨詢有限公司 泛海三江 威海鼠尾草 Excel 數(shù)據(jù)處理與分析應(yīng)用大全 廣東國(guó)咨招標(biāo)有限公司 甘肅中泰博瑞工程項(xiàng)目管理咨詢有限公司 山東創(chuàng)盈項(xiàng)目管理有限公司 拆邊機(jī) 當(dāng)代建筑大師 廣西北纜電纜有限公司 大山檳榔 上海地鐵維護(hù)保障有限公司通號(hào)分公司 舌花雛菊 甘肅中維國(guó)際招標(biāo)有限公司 華潤(rùn)燃?xì)猓ㄉ虾#┯邢薰? 湖北鑫宇陽(yáng)光工程咨詢有限公司 GB8163標(biāo)準(zhǔn)無(wú)縫鋼管 中國(guó)石油煉化工程建設(shè)項(xiàng)目部 韶關(guān)市優(yōu)采招標(biāo)代理有限公司 莎草目 建設(shè)部關(guān)于開展城市規(guī)劃動(dòng)態(tài)監(jiān)測(cè)工作的通知 電梯平層準(zhǔn)確度 廣州利好來(lái)電氣有限公司 四川中澤盛世招標(biāo)代理有限公司