1、輸出范圍:20 mv至(vs - 0.2) v 2、輸入共模范圍:地電壓以下至6× (vs - 1 v) 3、增益:×20,可變范圍:×1至×160 4、400 kΩ差分輸入電阻 5、精確的中量程失調(diào)能力 6、提供單極/雙極/三極低通濾波 7、將1kΩ負(fù)載驅(qū)動(dòng)至 4 v (vs = 5 v)
電源電壓: 3.0 v至 36 v 反相電壓保護(hù):-34 v 峰值輸入電壓(40 ms):60 v 內(nèi)置瞬變尖峰保護(hù)功能和rfi濾波器 工作溫度范圍:-40°c至 125°c
怎么要這么問呢?差分放大器 = 差動(dòng)放大器 只是表達(dá)文字上的不同而以.
差動(dòng)放大器(differential amplifier) 將兩個(gè)對(duì)稱放大器件接在一起,理想情況下,輸出信號(hào)u0只與一對(duì)輸入信號(hào)uI1、uI2的差值有關(guān)的放大單元,又稱差動(dòng)放大器。圖中輸入信號(hào)可看成由...
你好,單電源儀表放大器電路連接方法: 放大器兩個(gè)接口,一個(gè)進(jìn),一個(gè)出,一般有標(biāo)記。用同軸電纜+F頭連接。輸出接分配器的入端,輸出為8路可分別送入八個(gè)電視或監(jiān)控器。之間的連線都是75歐的同軸電纜,希望可...
格式:pdf
大?。?span id="oevday1" class="single-tag-height">1.0MB
頁數(shù): 5頁
評(píng)分: 4.6
為使心電圖(ECG:Electrocardiograph)機(jī)簡單便攜,采用干電池供電模式,提供不高于3 V的電壓,應(yīng)用放大器AD623、TLV2254和阻容器件組成心電圖機(jī)的前置放大器,實(shí)現(xiàn)了心電微弱信號(hào)的高精度放大、極化電壓的快速消除等功能,保證了心電微弱信號(hào)的精確和穩(wěn)定,便于心電圖機(jī)后續(xù)數(shù)據(jù)采集和分析。同時(shí),由于采用單電源供電,使心電圖機(jī)供電模式簡化,電路更加簡單,促進(jìn)了心電圖機(jī)進(jìn)一步向便攜式方向發(fā)展。
格式:pdf
大?。?span id="tompwz8" class="single-tag-height">1.0MB
頁數(shù): 未知
評(píng)分: 4.7
ISL28218是一款雙通道運(yùn)算放大器,采用單電源和對(duì)地基準(zhǔn)輸入、軌到軌輸出,單電源或雙電源工作為設(shè)計(jì)提供了靈活性。其可靠的輸入級(jí)具有電路保護(hù)功能,寬共模電壓最大范圍低于負(fù)電軌0.5V。ISL28218N供設(shè)計(jì)人員用于各種惡劣的工作環(huán)境,以及信號(hào)低于對(duì)地電壓的傳感應(yīng)用。
經(jīng)典的四電阻差動(dòng)放大器 (DifferenTIal amplifier,差分放大器) 似乎很簡單,但其在電路中的性能不佳。本文從實(shí)際生產(chǎn)設(shè)計(jì)出發(fā),討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。
大學(xué)里的電子學(xué)課程說明了理想運(yùn)算放大器的應(yīng)用,包括反相和同相放大器,然后將它們進(jìn)行組合,構(gòu)建差動(dòng)放大器。圖 1 所示的 經(jīng)典四電阻差動(dòng)放大器非常有用,教科書和講座 40 多年來一直在介紹該器件。
圖 1. 經(jīng)典差動(dòng)放大器
這種簡化可以在教科書中看到,但現(xiàn)實(shí)中無法這樣做,因?yàn)殡娮栌肋h(yuǎn)不可能完全相等。此外,基本電路在其他方面的改變可 產(chǎn)生意想不到的行為。下列示例雖經(jīng)過簡化以顯示出問題的本質(zhì),但來源于實(shí)際的應(yīng)用問題。
差動(dòng)放大器的一項(xiàng)重要功能是抑制兩路輸入的共模信號(hào)。如圖1 所示,假設(shè)V2 為 5 V,V1 為 3 V,則4V為共模輸入。V2 比共模電壓高 1 V,而V1 低 1 V。二者之差為 2 V,因此R2/R1的“理想”增益施加于2 V。如果電阻非理想,則共模電壓的一部分將被差動(dòng)放大器放大,并作為V1 和V2 之間的有效電壓差出現(xiàn)在VOUT ,無法與真實(shí)信號(hào)相區(qū)別。差動(dòng)放大器抑制這一部分電壓的能力稱為共模抑制(CMR)。該參數(shù)可以表示為比率的形式(CMRR),也可以轉(zhuǎn)換為分貝(dB)。
低容差電阻
第一個(gè)次優(yōu)設(shè)計(jì)如圖 2 所示。該設(shè)計(jì)為采用OP291 的低端電流檢測(cè)應(yīng)用。R1 至R4 為分立式 0.5%電阻。由Pallás-Areny文章中的公式可知,最佳CMR為 64 dB.幸運(yùn)的是,共模電壓離接地很近,因此CMR并非該應(yīng)用中主要誤差源。具有 1%容差的電流檢測(cè)電阻會(huì)產(chǎn)生 1%誤差,但該初始容差可以校準(zhǔn)或調(diào)整。然而,由于工作范圍超過 80°C,因此必須考慮電阻的溫度系數(shù)。
圖 2. 具有高噪聲增益的低端檢測(cè)
針對(duì)極低的分流電阻值,應(yīng)使用 4 引腳開爾文檢測(cè)電阻。采用高精度 0.1 Ω電阻,并以幾十分之一英寸的PCB走線直接連接該電阻很容易增加 10 mΩ,導(dǎo)致10%以上的誤差。但誤差會(huì)更大,因?yàn)镻CB上的銅走線溫度系數(shù)超過 3000 ppm。
分流電阻值必須仔細(xì)選擇。數(shù)值更高則產(chǎn)生更大的信號(hào)。這是好事,但功耗(I2R) 也會(huì)隨之增加,可能高達(dá)數(shù)瓦。采用較小的 數(shù)值(mΩ級(jí)別),則線路和PCB走線的寄生電阻可能會(huì)導(dǎo)致較大的誤差。
通常使用開爾文檢測(cè)來降低這些誤差。可以使用一 個(gè)特殊的四端電阻(比如Ohmite LVK系列),或者對(duì)PCB布局進(jìn)行優(yōu)化以使用標(biāo)準(zhǔn)電阻。若數(shù)值極小,可以使用PCB 走線,但這樣不會(huì)很精確。商用四端電阻(比如Ohmite或Vishay的產(chǎn)品)可能需要數(shù)美元或更昂貴,才能提供 0.1%容差和極低溫度系數(shù)。進(jìn)行完整的誤差預(yù)算分析可以顯示如何在成本增加最少的情況下改善精度。
有關(guān)無電流流過檢測(cè)電阻卻具有較大失調(diào)(31mV)的問題,是“軌到軌”運(yùn)算放大器無法一路擺動(dòng)到負(fù)電源軌(接地)引起 的。
術(shù)語“軌到軌”具有誤導(dǎo)性:輸出將會(huì)靠近電源軌--比經(jīng)典發(fā)射極跟隨器的輸出級(jí)要近得多--但永遠(yuǎn)不會(huì)真正到達(dá)電源軌。軌到軌運(yùn)算放大器具有最小輸出電壓VOL,數(shù)值等 于VCE(SAT) 或RDS(ON) &TImes; ILOAD。若失調(diào)電壓等于 1.25 mV,噪聲增益等于 30,則輸出等于:1.25 mV &TImes; 30 = ±37.5 mV(由于存在VOS,加上VOL導(dǎo)致的 35 mV)。
根據(jù)VOS極性不同,無負(fù)載電流的情況下輸出可能高達(dá) 72.5 mV。若VOS 最大值為 30μV,且VOL 最大值為 8 mV,則現(xiàn)代零漂移放大器(如 AD8539)可將總誤差降低至主要由檢測(cè)電阻所導(dǎo)致的水平。
另一個(gè)低端檢測(cè)應(yīng)用
另一個(gè)示例如圖 3 所示。該示例具有較低的噪聲增益,但它使 用 3 mV失調(diào)、10-μV/°C失調(diào)漂移和 79 dB CMR的低精度四通道運(yùn)算放大器。在 0 A至 3.6 A范圍內(nèi),要求達(dá)到±5 mA精度。若采用±0.5%檢測(cè)電阻,則要求的±0.14%精度便無法實(shí)現(xiàn)。若使用 100 mΩ電阻,則±5 mA電流可產(chǎn)生±500 μV壓降。
不幸的是,運(yùn)算放大器隨溫度變化的失調(diào)電壓要比測(cè)量值大十倍。哪怕VOS 調(diào)整為零,50°C的溫度變化就會(huì)耗盡全部誤差預(yù)算。若噪聲增益為 13,則VOS的任何變化都將擴(kuò)大 13 倍。為了改善性能,應(yīng)使用零漂移運(yùn)算放大器(比如 AD8638、 ADA4051或 ADA4528)、薄膜電阻陣列以及精度更高的檢測(cè)電阻。
圖 3. 低端檢測(cè),示例 2
高噪聲增益
圖 4 中的設(shè)計(jì)用來測(cè)量高端電流,其噪聲增益為 250。OP07C運(yùn)算放大器的VOS最大額定值為 150 μV.最大誤差為 150 μV &TImes; 250 = 37.5 mV。為了改善性能,采用 ADA4638 零漂移運(yùn)算放大器。該器件在-40°C至+125°C溫度范圍內(nèi)的額定失調(diào)電壓為 12.5 μV。然而,由于高噪聲增益,共模電壓將非常接近檢測(cè)電阻兩端的電壓。OP07C的輸入電壓范圍(IVR)為 2 V,這表示輸入電壓必須至少比正電軌低 2 V.對(duì)于ADA4638 而言,IVR = 3 V。
圖 4. 高端電流檢測(cè)
單電容滾降
圖5 中的示例稍為復(fù)雜。目前為止,所有的等式都針對(duì)電阻而言;但更準(zhǔn)確的做法是,它們應(yīng)當(dāng)將阻抗考慮在內(nèi)。在加入電容的情況下(無論是故意添加的電容或是寄生電容),交流CMRR均取決于目標(biāo)頻率下的阻抗比。若要滾降該示例中的頻率響應(yīng),則可在反饋電阻兩端添加電容C2,如通常會(huì)在反相運(yùn)算放大器配置中做的那樣。
圖 5. 嘗試創(chuàng)建低通響應(yīng)
如需匹配阻抗比Z1 = Z3 和Z2 = Z4,就必須添加電容C4.市場(chǎng)上很容易就能買到 0.1%或更好的電阻,但哪怕是0.5%的電容售價(jià)都要高于1 美元。極低頻率下的阻抗可能無關(guān)緊要,但電 容容差或PCB布局產(chǎn)生的兩個(gè)運(yùn)算放大器輸入端 0.5 pF的差額可導(dǎo)致 10 kHz時(shí)交流CMR下降 6 dB。
這在使用開關(guān)穩(wěn)壓器時(shí)顯得尤為重要。單芯片差動(dòng)放大器(如AD8271、 AD8274或 AD8276)具有好 得多的交流CMRR性能,因?yàn)檫\(yùn)算放大器的兩路輸入處于芯片上的可控環(huán)境下,且價(jià)格通常較分立式運(yùn)算放大器和四個(gè)精密電阻更為便宜。
運(yùn)算放大器輸入端之間的電容
為了滾降差動(dòng)放大器的響應(yīng),某些設(shè)計(jì)人員會(huì)嘗試在兩個(gè)運(yùn)算放大器輸入端之間添加電容C1 以形成差分濾波器,如圖 6 所示。這樣做對(duì)于儀表放大器而言是可行的,但對(duì)于運(yùn)算放大器卻不可行。
VOUT將會(huì)通過R2 而上下移動(dòng),形成閉合環(huán)路。在直流時(shí),這不會(huì)產(chǎn)生任何問題,并且電路的表現(xiàn)與等式 2 所描 述的相一致。隨著頻率的增加,C1 電抗下降。進(jìn)入運(yùn)算放大器輸入端的反饋降低,從而導(dǎo)致增益上升。最終,運(yùn)算放大器會(huì)在開環(huán)狀態(tài)下工作,因?yàn)殡娙菔馆斎攵搪贰?/p>
圖 6. 輸入電容降低高頻反饋
在波特圖上,運(yùn)算放大器的開環(huán)增益在-20dB/dec處下降,但噪聲增益在+20 dB/dec處上升,形成-40dB/dec交越。正如控制系統(tǒng)課堂上所學(xué)到的,它必然產(chǎn)生振蕩。一般而言,永遠(yuǎn)不要在運(yùn)算放大器的輸入端之間使用電容(極少數(shù)情況下例外,但本文不作討論)。
無論是分立式或是單芯片,四電阻差動(dòng)放大器的使用都非常廣泛。為了獲得穩(wěn)定且值得投入生產(chǎn)的設(shè)計(jì),應(yīng)仔細(xì)考慮噪聲增益、輸入電壓范圍、阻抗比和失調(diào)電壓規(guī)格。
經(jīng)典的四電阻差動(dòng)放大器似乎很簡單,但其在電路中的性能不佳。本文從實(shí)際生產(chǎn)設(shè)計(jì)出發(fā),討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。大學(xué)里的電子學(xué)課程說明了理想運(yùn)算放大器的應(yīng)用,包括反相和同相放大器,然后將它們進(jìn)行組合,構(gòu)建差動(dòng)放大器。圖 1 所示的經(jīng)典四電阻差動(dòng)放大器非常有用,教科書和講座 40 多年來一直在介紹該器件。
圖 1. 經(jīng)典差動(dòng)放大器
CMRR
差動(dòng)放大器的一項(xiàng)重要功能是抑制兩路輸入的共模信號(hào)。如圖1 所示,假設(shè)V2 為 5 V,V1 為 3 V,則 4V為共模輸入。V2 比共模電壓高 1 V,而V1 低 1 V。二者之差為 2 V,因此R2/R1的“理想”增益施加于 2 V。如果電阻非理想,則共模電壓的一部分將被差動(dòng)放大器放大,并作為V1 和V2 之間的有效電壓差出現(xiàn)在VOUT ,無法與真實(shí)信號(hào)相區(qū)別。差動(dòng)放大器抑制這一部分電壓的能力稱為共模抑制(CMR)。該參數(shù)可以表示為比率的形式(CMRR),也可以轉(zhuǎn)換為分貝(dB)。
因此,在單位增益和 1%電阻情況下,CMRR等于 50 V/V(或約為 34 dB);在 0.1%電阻情況下,CMRR等于 500 V/V(或約為 54 dB)—— 甚至假定運(yùn)算放大器為理想器件,具有無限的共模抑制能力。若運(yùn)算放大器的共模抑制能力足夠高,則總CMRR受限于電阻匹配。某些低成本運(yùn)算放大器具有 60 dB至 70 dB的最小CMRR,使計(jì)算更為復(fù)雜。
低容差電阻
第一個(gè)次優(yōu)設(shè)計(jì)如圖 2 所示。該設(shè)計(jì)為采用OP291 的低端電流檢測(cè)應(yīng)用。R1 至R4 為分立式 0.5%電阻。由Pallás-Areny文章中的公式可知,最佳CMR為 64 dB。幸運(yùn)的是,共模電壓離接地很近,因此CMR并非該應(yīng)用中主要誤差源。具有 1%容差的電流檢測(cè)電阻會(huì)產(chǎn)生 1%誤差,但該初始容差可以校準(zhǔn)或調(diào)整。然而,由于工作范圍超過 80°C,因此必須考慮電阻的溫度系數(shù)。
圖 2. 具有高噪聲增益的低端檢測(cè)
針對(duì)極低的分流電阻值,應(yīng)使用 4 引腳開爾文檢測(cè)電阻。采用高精度 0.1 Ω電阻,并以幾十分之一英寸的PCB走線直接連接該電阻很容易增加 10 mΩ,導(dǎo)致 10%以上的誤差。但誤差會(huì)更大,因?yàn)镻CB上的銅走線溫度系數(shù)超過 3000 ppm。分流電阻值必須仔細(xì)選擇。數(shù)值更高則產(chǎn)生更大的信號(hào)。
這是好事,但功耗(I2R)也會(huì)隨之增加,可能高達(dá)數(shù)瓦。采用較小的數(shù)值(mΩ級(jí)別),則線路和PCB走線的寄生電阻可能會(huì)導(dǎo)致較大的誤差。通常使用開爾文檢測(cè)來降低這些誤差??梢允褂靡粋€(gè)特殊的四端電阻(比如Ohmite LVK系列),或者對(duì)PCB布局進(jìn)行優(yōu)化以使用標(biāo)準(zhǔn)電阻,如“改進(jìn)低值分流電阻的焊盤布局,優(yōu)化高電流檢測(cè)精度”一文中所述。若數(shù)值極小,可以使用PCB 走線,但這樣不會(huì)很精確,如“ PCB走線的直流電阻 ”一文中所述。
商用四端電阻(比如Ohmite或Vishay的產(chǎn)品)可能需要數(shù)美元或更昂貴,才能提供 0.1%容差和極低溫度系數(shù)。進(jìn)行完整的誤差預(yù)算分析可以顯示如何在成本增加最少的情況下改善精度。有關(guān)無電流流過檢測(cè)電阻卻具有較大失調(diào)(31mV)的問題,是“軌到軌”運(yùn)算放大器無法一路擺動(dòng)到負(fù)電源軌(接地)引起的。術(shù)語“軌到軌”具有誤導(dǎo)性:輸出將會(huì)靠近電源軌——比經(jīng)典發(fā)射極跟隨器的輸出級(jí)要近得多——但永遠(yuǎn)不會(huì)真正到達(dá)電源軌。
軌到軌運(yùn)算放大器具有最小輸出電壓VOL,數(shù)值等于VCE(SAT)或RDS(ON) &TImes; ILOAD,,如“MT-035:運(yùn)算放大器輸入、輸出、單電源和軌到軌問題 ”所述。若失調(diào)電壓等于 1.25 mV,噪聲增益等于 30,則輸出等于:1.25 mV &TImes; 30 = ±37.5 mV(由于存在VOS,加上VOL導(dǎo)致的 35 mV)。根據(jù)VOS極性不同,無負(fù)載電流的情況下輸出可能高達(dá) 72.5 mV。若VOS 最大值為 30μV,且VOL 最大值為 8 mV,則現(xiàn)代零漂移放大器(如 AD8539)可將總誤差降低至主要由檢測(cè)電阻所導(dǎo)致的水平。
另一個(gè)低端檢測(cè)應(yīng)用
另一個(gè)示例如圖所示。該示例具有較低的噪聲增益,但它使用 3 mV失調(diào)、10-μV/°C失調(diào)漂移和 79 dB CMR的低精度四通道運(yùn)算放大器。在 0 A至 3.6 A范圍內(nèi),要求達(dá)到±5 mA精度。若采用±0.5%檢測(cè)電阻,則要求的±0.14%精度便無法實(shí)現(xiàn)。若使用 100 mΩ電阻,則±5 mA電流可產(chǎn)生±500 μV壓降。
不幸的是,運(yùn)算放大器隨溫度變化的失調(diào)電壓要比測(cè)量值大十倍。哪怕VOS 調(diào)整為零,50°C的溫度變化就會(huì)耗盡全部誤差預(yù)算。若噪聲增益為 13,則VOS的任何變化都將擴(kuò)大 13 倍。為了改善性能,應(yīng)使用零漂移運(yùn)算放大器(比如 AD8638、 ADA4051或 ADA4528)、薄膜電阻陣列以及精度更高的檢測(cè)電阻。
圖 3. 低端檢測(cè),示例 2
高噪聲增益
圖 4 中的設(shè)計(jì)用來測(cè)量高端電流,其噪聲增益為 250。OP07C運(yùn)算放大器的VOS最大額定值為 150 μV。最大誤差為 150 μV &TImes; 250 = 37.5 mV。為了改善性能,采用 ADA4638 零漂移運(yùn)算放大器。
該器件在–40°C至+125°C溫度范圍內(nèi)的額定失調(diào)電壓為 12.5 μV。然而,由于高噪聲增益,共模電壓將非常接近檢測(cè)電阻兩端的電壓。OP07C的輸入電壓范圍(IVR)為 2 V,這表示輸入電壓必須至少比正電軌低 2 V。對(duì)于ADA4638 而言,IVR = 3 V。
圖 4. 高端電流檢測(cè)
單電容滾降
圖 5 中的示例稍為復(fù)雜。目前為止,所有的等式都針對(duì)電阻而言;但更準(zhǔn)確的做法是,它們應(yīng)當(dāng)將阻抗考慮在內(nèi)。在加入電容的情況下(無論是故意添加的電容或是寄生電容),交流CMRR均取決于目標(biāo)頻率下的阻抗比。若要滾降該示例中的頻率響應(yīng),則可在反饋電阻兩端添加電容C2,如通常會(huì)在反相運(yùn)算放大器配置中做的那樣。
圖 5. 嘗試創(chuàng)建低通響應(yīng)
如需匹配阻抗比Z1 = Z3 和Z2 = Z4,就必須添加電容C4。市場(chǎng)上很容易就能買到 0.1%或更好的電阻,但哪怕是 0.5%的電容售價(jià)都要高于 1 美元。極低頻率下的阻抗可能無關(guān)緊要,但電容容差或PCB布局產(chǎn)生的兩個(gè)運(yùn)算放大器輸入端 0.5 pF的差額可導(dǎo)致 10 kHz時(shí)交流CMR下降 6 dB。
這在使用開關(guān)穩(wěn)壓器時(shí)顯得尤為重要。單芯片差動(dòng)放大器(如AD8271、 AD8274或 AD8276)具有好得多的交流CMRR性能,因?yàn)檫\(yùn)算放大器的兩路輸入處于芯片上的可控環(huán)境下,且價(jià)格通常較分立式運(yùn)算放大器和四個(gè)精密電阻更為便宜。
運(yùn)算放大器輸入端之間的電容
為了滾降差動(dòng)放大器的響應(yīng),某些設(shè)計(jì)人員會(huì)嘗試在兩個(gè)運(yùn)算放大器輸入端之間添加電容C1 以形成差分濾波器,如圖 6 所示。這樣做對(duì)于儀表放大器而言是可行的,但對(duì)于運(yùn)算放大器卻不可行。V OUT 將會(huì)通過R2 而上下移動(dòng),形成閉合環(huán)路。在直流時(shí),這不會(huì)產(chǎn)生任何問題,并且電路的表現(xiàn)與等式 2 所描述的相一致。隨著頻率的增加,C1 電抗下降。進(jìn)入運(yùn)算放大器輸入端的反饋降低,從而導(dǎo)致增益上升。最終,運(yùn)算放大器會(huì)在開環(huán)狀態(tài)下工作,因?yàn)殡娙菔馆斎攵搪贰?/p>
圖 6. 輸入電容降低高頻反饋
在波特圖上,運(yùn)算放大器的開環(huán)增益在 –20dB/dec處下降,但噪聲增益在+20 dB/dec處上升,形成–40dB/dec交越。正如控制系統(tǒng)課堂上所學(xué)到的,它必然產(chǎn)生振蕩。一般而言,永遠(yuǎn)不要在運(yùn)算放大器的輸入端之間使用電容(極少數(shù)情況下例外,但本文不作討論)。無論是分立式或是單芯片,四電阻差動(dòng)放大器的使用都非常廣泛。為了獲得穩(wěn)定且值得投入生產(chǎn)的設(shè)計(jì),應(yīng)仔細(xì)考慮噪聲增益、輸入電壓范圍、阻抗比和失調(diào)電壓規(guī)格。
ad8532單電源運(yùn)算放大器
AD8532: 250 mA輸出、雙通道、低成本、單電源運(yùn)算放大器(可替代產(chǎn)品:ADA4692-2)
AD8531、AD8532和AD8534分別是單通道、雙通道和四通道軌到軌輸入與輸出、單電源放大器,具有250 mA輸出驅(qū)動(dòng)電流。這種高輸出電流特性使這些放大器特別適合驅(qū)動(dòng)阻性或容性負(fù)載。交流性能也非常出色,具有3 MHz帶寬、5 V/μs壓擺率及低失真特性。所有器件均保證可采用3 V單電源和5 V電源工作。
AD853x系列具有極低的輸入偏置電流,因此可用于積分器和二極管放大,以及其它要求低輸入偏置電流的應(yīng)用。采用5 V電源時(shí),每個(gè)放大器的電源電流僅為750 μA,使得低電流應(yīng)用能夠控制高電流負(fù)載。
具體應(yīng)用包括計(jì)算機(jī)、音頻端口、聲卡和機(jī)頂盒的音頻放大。AD853x系列非常穩(wěn)定,能夠驅(qū)動(dòng)諸如LCD中的高容性負(fù)載。
這些器件在輸入與輸出上具有軌到軌擺幅能力,因而設(shè)計(jì)人員可以在單電源系統(tǒng)中緩沖CMOS DAC、ASIC或其它寬輸出擺幅器件。
AD8531、AD8532和AD8534的額定溫度范圍為-40℃至+85℃擴(kuò)展工業(yè)溫度范圍。AD8531提供8引腳SOIC、5引腳SC70和5引腳SOT-23三種封裝。AD8532提供8引腳SOIC、8引腳MSOP和8引腳TSSOP表面貼裝三種封裝。AD8534提供窄體14引腳SOIC和14引腳TSSOP表面貼裝兩種封裝。
單電源供電:2.7 V至6 V
高輸出電流:±250 mA
低電源電流:每個(gè)放大器750 μA
寬帶寬:3 MHz
壓擺率:5 V/μs
無反相
低輸入電流
單位增益穩(wěn)定
軌到軌輸入和輸出
-3dB Bandwidth>: 3MHz
Slew Rate: 5V/μs
Vos: 25mV
Ib: 5pA
# OpAmps per Pkg: 2
Input Noise (nV/rtHz): 30nV/rtHz
Vcc-Vee: 3V to 6V
Isy per Amplifier: 1.25mA
Packages: SOIC,SOP
AD8532 引腳配置框圖
- 多媒體音頻
- LCD驅(qū)動(dòng)器
- ASIC輸入或輸出放大器
- 耳機(jī)驅(qū)動(dòng)器