中文名 | 分布式光纖光柵傳感直接模擬應(yīng)變檢測(cè)系統(tǒng)研究 | 項(xiàng)目類別 | 面上項(xiàng)目 |
---|---|---|---|
項(xiàng)目負(fù)責(zé)人 | 答孝義 | 依托單位 | 武漢大學(xué) |
課題目標(biāo)是用自制光纖光柵以電子學(xué)方法而不藉助光譜儀實(shí)現(xiàn)應(yīng)變檢測(cè)。課題甫始,我們即著力于光纖光柵的研制。在有關(guān)研究院所協(xié)助下,較快完成光纖光柵的研制。基本按原定方案達(dá)到原定課題目標(biāo):當(dāng)傳感光柵所受應(yīng)變變化時(shí),微位移器上電壓相應(yīng)改變,驅(qū)動(dòng)檢測(cè)光柵跟蹤傳感光柵上的應(yīng)變。由初步實(shí)驗(yàn)推算,此系統(tǒng)單點(diǎn)應(yīng)變檢測(cè)誤差為±20%,可測(cè)范圍為100ε到100ε。現(xiàn)存問題主要是用目前這種經(jīng)濟(jì)的方法很難將光纖光柵的溫度效應(yīng)與應(yīng)變效應(yīng)區(qū)分開來。此外,光纖光柵易折斷。即使如此,經(jīng)進(jìn)一步改進(jìn)后,此應(yīng)變監(jiān)測(cè)系統(tǒng)在民用建筑中有著使用前景。此項(xiàng)研究對(duì)我單位研究生培養(yǎng)和其他相關(guān)研究起了推動(dòng)作用。 2100433B
批準(zhǔn)號(hào) |
69674033 |
項(xiàng)目名稱 |
分布式光纖光柵傳感直接模擬應(yīng)變檢測(cè)系統(tǒng)研究 |
項(xiàng)目類別 |
面上項(xiàng)目 |
申請(qǐng)代碼 |
F0306 |
項(xiàng)目負(fù)責(zé)人 |
答孝義 |
負(fù)責(zé)人職稱 |
教授 |
依托單位 |
武漢大學(xué) |
研究期限 |
1997-01-01 至 1999-12-31 |
支持經(jīng)費(fèi) |
10(萬元) |
光纖光柵受外界溫度、應(yīng)力影響,中心波長(zhǎng)會(huì)產(chǎn)生漂移,測(cè)試漂移量,根據(jù)定標(biāo)情況就可得到溫度或者應(yīng)力大小。 溫度變化的時(shí)候會(huì)改變光在物質(zhì)中的傳播速度,也就是說,當(dāng)溫度變化的時(shí)候光路中的折射率會(huì)發(fā)生變化,這個(gè)...
TGW光纖光柵感溫火災(zāi)探測(cè)系統(tǒng)
TGW光纖光柵感溫火災(zāi)探測(cè)系統(tǒng)產(chǎn)品簡(jiǎn)介目前國內(nèi)外應(yīng)用的光纖光柵傳感技術(shù)由于受到光源帶寬限制,一根光纖上光柵復(fù)用數(shù)量極為有限(不超過30個(gè)),無法滿足火災(zāi)探測(cè)所需測(cè)點(diǎn)需求。理工光科發(fā)明的編碼光纖光柵、全...
這個(gè)概念我覺得看怎么理解了,這些傳感器應(yīng)該統(tǒng)屬于光學(xué)傳感器,你所說的三個(gè)概念相互之間都有交叉,光柵傳感器里面包括,光纖光柵,透射體光柵等,也就是既有光纖的也有光電的,光纖傳感器又分為功能型和非功能型,...
格式:pdf
大?。?span id="ce6ke9a" class="single-tag-height">21KB
頁數(shù): 2頁
評(píng)分: 4.5
光纖傳感、光纖光柵、光纖光柵傳感 光纖傳感技術(shù) 由于光纖不僅可以作為光波的傳輸媒質(zhì),而且光波在光纖 中的傳播時(shí)表征光波的特征參量(振幅、相位、偏振態(tài)、波長(zhǎng)等)因外界因素 (如溫度、壓力、磁場(chǎng)、電場(chǎng)、位移等)的作用而間接或直接地發(fā)生變化,從 而可將光纖用作傳感器元件來探測(cè)各種待測(cè)量(物理量、化學(xué)量和生物量), 這就是光纖傳感器的基本原理。 光纖傳感技術(shù)的分類 光纖傳感器可以分為傳 感型(本征型)和傳光型(非本征型)兩大類。利用外界因素改變光纖中光的 特征參量,從而對(duì)外界因素進(jìn)行計(jì)量和數(shù)據(jù)傳輸?shù)?,稱為傳感型光纖傳感器, 它具有傳感合一的特點(diǎn),信息的獲取和傳輸都在光纖之中。傳光型光纖傳感器 是指利用其它敏感元件測(cè)得的特征量,由光纖進(jìn)行數(shù)據(jù)傳輸,它的特點(diǎn)是充分 利用現(xiàn)有的傳感器,便于推廣應(yīng)用。這兩類光纖傳感器都可再分成光強(qiáng)調(diào)制、 相位調(diào)制、偏振態(tài)調(diào)制和波長(zhǎng)調(diào)制等幾種形式。 光纖傳感器的特點(diǎn) 1、
格式:pdf
大?。?span id="oi7943r" class="single-tag-height">21KB
頁數(shù): 4頁
評(píng)分: 4.8
針對(duì)纜索局部埋植傳感器測(cè)試索力的特殊要求,特制光纖光柵應(yīng)變傳感器,傳感器封裝保證光纖光柵植入纜索的成活率,減敏結(jié)構(gòu)設(shè)計(jì)保證纜索索力測(cè)試的大應(yīng)力監(jiān)測(cè)要求。針對(duì)應(yīng)變傳感器與鋼絲的2種連接方式,即傳統(tǒng)的結(jié)構(gòu)膠連接和特制的抱箍機(jī)械連接方式進(jìn)行了張拉性能測(cè)試。由標(biāo)定的傳感器力敏系數(shù)可知,在鋼絲產(chǎn)生5 000×10-6的應(yīng)變變化下,光纖光柵實(shí)際中心波長(zhǎng)變化不超過2 900 pm,達(dá)到了減敏效果,傳感器可以滿足大索力長(zhǎng)期測(cè)試要求。
這些傳感器主要包括光纖光柵應(yīng)變傳感器、溫度傳感器、加速度傳感器、位移傳感器、壓力傳感器、流量傳感器、液位傳感器等。
此種傳感器是在工程領(lǐng)域中應(yīng)用最廣泛,技術(shù)最成熟的光纖傳感器。應(yīng)變直接影響光纖光柵的波長(zhǎng)漂移,在工作環(huán)境較好或是待測(cè)結(jié)構(gòu)要求精小傳感器的情況下,人們將裸光纖光柵作為應(yīng)變傳感器直接粘貼在待測(cè)結(jié)構(gòu)的表面或者是埋設(shè)在結(jié)構(gòu)的內(nèi)部。由于光纖光柵比較脆弱,在惡劣工作環(huán)境中非常容易破壞,因而需要對(duì)其進(jìn)行封裝后才能使用。目前常用的封裝方式主要有基片式、管式和基于管式的兩端夾持式。
溫度是國際單位制給出的基本物理量之一,是工農(nóng)業(yè)生產(chǎn)和科學(xué)實(shí)驗(yàn)中需要經(jīng)常測(cè)量和控制的主要參數(shù),同時(shí)也是與人們?nèi)粘I蠲芮邢嚓P(guān)的一個(gè)重要物理量。目前,比較常用的電類溫度傳感器主要是熱電偶溫度傳感器和熱敏電阻溫度傳感器。光纖溫度傳感與傳統(tǒng)的傳感器相比有很多優(yōu)點(diǎn),如靈敏度高,體積小,耐腐蝕,抗電磁輻射,光路可彎曲,便于遙測(cè)等?;诠饫w光柵技術(shù)的溫度傳感器,采用波長(zhǎng)編碼技術(shù),消除了光源功率波動(dòng)及系統(tǒng)損耗的影響,適用于長(zhǎng)期監(jiān)測(cè);而且多個(gè)光纖光柵組成的溫度傳感系統(tǒng),采用一根光纜,可實(shí)現(xiàn)準(zhǔn)分布式測(cè)量。
溫度也是直接影響光纖光柵波長(zhǎng)變化的因素,人們常常直接將裸光纖光柵作為溫度傳感器直接應(yīng)用。同光纖光柵應(yīng)變傳感器一樣,光纖光柵溫度傳感器也需要進(jìn)行封裝,封裝技術(shù)的主要作用是保護(hù)和增敏,人們希望光纖光柵能夠具有較強(qiáng)的機(jī)械強(qiáng)度和較長(zhǎng)的壽命,與此同時(shí),還希望能在光纖傳感中通過適當(dāng)?shù)姆庋b技術(shù)提高光纖光柵對(duì)溫度的響應(yīng)靈敏度。普通的光纖光柵其溫度靈敏度只有0.010 nm/℃左右,這樣對(duì)于工作波長(zhǎng)在1550nm的光纖光柵來說,測(cè)量100℃的溫度范圍波長(zhǎng)變化僅為lnm。應(yīng)用分辨率為lpm的解碼儀進(jìn)行解調(diào)可獲得很高的溫度分辨率,而如果因?yàn)樵O(shè)備的限制,采用分辨率為0. 06nm的光譜分析儀進(jìn)行測(cè)量,其分辨率僅為6度,遠(yuǎn)遠(yuǎn)不能滿足實(shí)際測(cè)量的需要。目前常用的封裝方式有基片式、管式和聚合物封裝方式等。
研究人員開展了應(yīng)用光纖光柵進(jìn)行位移測(cè)量的研究,目前這些研究都是通過測(cè)量懸臂梁表面的應(yīng)變,然后通過計(jì)算求得懸臂梁垂直變形,即懸臂梁端部垂直位移。這種“位移傳感器”不是真正意思上的位移傳感器,目前這種傳感器在實(shí)際工程已取得了應(yīng)用,國內(nèi)亦具有商品化產(chǎn)品。
1996年,美國的Berkoff等人利用光纖光柵的壓力效應(yīng)設(shè)計(jì)了光纖光柵振動(dòng)加速度計(jì)。轉(zhuǎn)換器由質(zhì)量板、基板和復(fù)合材料組成,質(zhì)量板和基板都是6mm厚的鋁板,基板作為剛性板起支撐作用,中間為8mm厚的復(fù)合材料夾在兩鋁板中間起彈簧的作用。在質(zhì)量塊的慣性力作用下,埋在復(fù)合材料中的光纖光柵受到橫向力作用產(chǎn)生應(yīng)變,從而導(dǎo)致光纖光柵的布拉格波長(zhǎng)變化。采用非平衡M-Z干涉儀對(duì)光纖光柵的應(yīng)變與加速度間的關(guān)系進(jìn)行解調(diào).1998年,Todd采用雙撓性梁作為轉(zhuǎn)換器設(shè)計(jì)了光柵加速度計(jì)。加速度傳感器由兩個(gè)矩形梁和一個(gè)質(zhì)量塊組成,質(zhì)量塊通過點(diǎn)接觸焊接在兩平行梁中間,光纖光柵貼在第二個(gè)矩形梁的下表面。在傳感器受到振動(dòng)時(shí),在慣性力的作用下,質(zhì)量塊帶動(dòng)兩個(gè)矩形梁振動(dòng)使其產(chǎn)生應(yīng)變,傳遞給光纖光柵引起波長(zhǎng)移動(dòng)。這種傳感器也在國內(nèi)已經(jīng)有了商品化的產(chǎn)品。
對(duì)拉力或壓力的監(jiān)測(cè)也是監(jiān)測(cè)的一部分重要內(nèi)容,如橋梁結(jié)構(gòu)的拉索的整體索力、高緯度海洋平臺(tái)的冰壓力,以及道路的土壤壓力,水壓力等。哈工大歐進(jìn)萍等人相繼開發(fā)出了光纖光柵拉索壓力環(huán)和光纖光柵冰壓力傳感器,英國海軍研究中心開發(fā)了光纖光柵土壤壓力傳感器,用以監(jiān)測(cè)公路內(nèi)部的荷載情況。并且各國相繼開始光纖光柵油氣井壓力傳感器的研究工作。
除以上介紹的光纖光柵傳感器外,光纖光柵研究人員和傳感器設(shè)計(jì)人員基于光纖光柵的傳感原理,還設(shè)計(jì)出光纖光柵伸長(zhǎng)計(jì),光纖光柵曲率計(jì),光纖光柵濕度計(jì),以及光纖光柵傾角儀,光纖光柵連通管等。此外,人們還通過光纖光柵應(yīng)變傳感器制成用于測(cè)量公路運(yùn)輸情況的運(yùn)輸計(jì)、用于測(cè)量公路施工過程中瀝青應(yīng)變的應(yīng)變計(jì)等。
光纖傳感器的研究重點(diǎn)方向就是所謂的“智能材料結(jié)構(gòu)”,即可以實(shí)時(shí)采集材料結(jié)構(gòu)自身的受力,溫度等參數(shù),來實(shí)現(xiàn)對(duì)材料整體性能的智能檢測(cè)。在“智能材料”這方面,光纖光柵傳感器有很好的潛力,非常適用于這種準(zhǔn)分布式傳感應(yīng)用,因?yàn)楣饫w光柵是波長(zhǎng)編碼的,在材料中不同的監(jiān)測(cè)點(diǎn)埋設(shè)不同波長(zhǎng)的光柵作為傳感元件,再通過使用波分復(fù)用和時(shí)分復(fù)用技術(shù)就可以實(shí)現(xiàn)成百上千傳感點(diǎn)的準(zhǔn)分布式傳感,就可以實(shí)現(xiàn)“智能材料結(jié)構(gòu)”,而正確的埋設(shè)方法也是其中的一個(gè)重要環(huán)節(jié),研究者對(duì)布拉格光纖光柵傳感器的封裝與埋設(shè)也做了大量的研究,主要集中在以下方面:
(1)傳感光柵的保護(hù)問題
由于光纖光柵實(shí)際上是一段光纖,所以它在剪切力的作用下很容易斷,所以在埋設(shè)的過程中須對(duì)它采取相應(yīng)的保護(hù)措施,進(jìn)行相應(yīng)的封裝。
(2)傳感光柵與材料之間的應(yīng)力傳遞的建模
在應(yīng)力傳感過程中,傳感光柵是埋設(shè)入材料中的,所以應(yīng)力并不是直接作用在傳感光柵上的,這就意味著在材料和光柵之間存在一個(gè)力的傳遞問題,這是提高傳感準(zhǔn)確度的一個(gè)重要方面。這就需要利用材料力學(xué)的知識(shí)建立適當(dāng)?shù)哪P瓦M(jìn)行分析,更精確的分析還要采用有限元分析法。
(3)多軸應(yīng)變的產(chǎn)生的影響
對(duì)于光纖光柵的埋設(shè),光柵上受到的應(yīng)力有可能是多個(gè)方向的,除了軸向應(yīng)力還有橫向應(yīng)力,橫向應(yīng)力會(huì)使光纖產(chǎn)生雙折射現(xiàn)象,也即導(dǎo)致了原來的單峰反射譜分裂成兩個(gè)反射峰,這就給中心波長(zhǎng)的準(zhǔn)確檢測(cè)帶來了一定的困難。
由此可見,光柵的埋設(shè)技術(shù)是非常復(fù)雜的,如果需要準(zhǔn)確傳感,需要考慮的因素非常多,其中包括光柵的保護(hù),材料與光柵之間應(yīng)力的傳遞,應(yīng)力引起的雙折射效應(yīng)以及非均勻應(yīng)力引起的光譜展寬等等。
光纖光柵傳感器可以實(shí)現(xiàn)對(duì)溫度、應(yīng)變等物理量的直接測(cè)量。由于光纖光柵波長(zhǎng)對(duì)溫度與應(yīng)變同時(shí)敏感,即溫度與應(yīng)變同時(shí)引起光纖光柵耦合波長(zhǎng)移動(dòng),使得通過測(cè)量光纖光柵耦合波長(zhǎng)移動(dòng)無法對(duì)溫度與應(yīng)變加以區(qū)分。因此,解決交叉敏感問題,實(shí)現(xiàn)溫度和應(yīng)力的區(qū)分測(cè)量是傳感器實(shí)用化的前提。通過一定的技術(shù)來測(cè)定應(yīng)力和溫度變化來實(shí)現(xiàn)對(duì)溫度和應(yīng)力區(qū)分測(cè)量。這些技術(shù)的基本原理都是利用兩根或者兩段具有不同溫度和應(yīng)變響應(yīng)靈敏度的光纖光柵構(gòu)成雙光柵溫度與應(yīng)變傳感器,通過確定2個(gè)光纖光柵的溫度與應(yīng)變響應(yīng)靈敏度系數(shù),利用2個(gè)二元一次方程解出溫度與應(yīng)變。區(qū)分測(cè)量技術(shù)大體可分為兩類,即多光纖光柵測(cè)量和單光纖光柵測(cè)量。
多光纖光柵測(cè)量主要包括混合FBG/長(zhǎng)周期光柵(long period grating)法、雙周期光纖光柵法、光纖光柵/F-P腔集成復(fù)用法、雙FBG重疊寫入法。各種方法各有優(yōu)缺點(diǎn)。FBG/LPG法解調(diào)簡(jiǎn)單,但很難保證測(cè)量的是同一點(diǎn),精度為9×10-6,1.5℃。雙周期光纖光柵法能保證測(cè)量位置,提高了測(cè)量精度,但光柵強(qiáng)度低,信號(hào)解調(diào)困難。光纖光柵/F-P腔集成復(fù)用法傳感器溫度穩(wěn)定性好、體積小、測(cè)量精度高,精度可達(dá)20×10-6,1℃,但F-P的腔長(zhǎng)調(diào)節(jié)困難,信號(hào)解調(diào)復(fù)雜。雙FBG重疊寫入法精度較高,但是,光柵寫入困難,信號(hào)解調(diào)也比較復(fù)雜。
單光纖光柵測(cè)量主要包括用不同聚合物材料封裝單光纖光柵法、利用不同的FBG組合和預(yù)制應(yīng)變法等。用聚合物材料封裝單光纖光柵法是利用某些有機(jī)物對(duì)溫度和應(yīng)力的響應(yīng)不同增加光纖光柵對(duì)溫度或應(yīng)力靈敏度,克服交叉敏感效應(yīng)。這種方法的制作簡(jiǎn)單,但選擇聚合物材料困難。利用不同的FBG組合法是把光柵寫于不同折射率和溫度敏感性或不同溫度響應(yīng)靈敏度和摻雜材料濃度的2種光纖的連接處,利用不同的折射率和溫度靈敏性不同實(shí)現(xiàn)區(qū)分測(cè)量。這種方法解調(diào)簡(jiǎn)單,且解調(diào)為波長(zhǎng)編碼避免了應(yīng)力集中,但具有損耗大、熔接處易斷裂、測(cè)量范圍偏小等問題。預(yù)制應(yīng)變法是首先給光纖光柵施加一定的預(yù)應(yīng)變,在預(yù)應(yīng)變的情況下將光纖光柵的一部分牢固地粘貼在懸臂梁上。應(yīng)力釋放后,未粘貼部分的光纖光柵形變恢復(fù),其中心反射波長(zhǎng)不變;而粘貼在懸臂梁上的部分形變不能恢復(fù),從而導(dǎo)致了這部分光纖光柵的中心反射波長(zhǎng)改變,因此,這個(gè)光纖光柵有2個(gè)反射峰,一個(gè)反射峰(粘貼在懸臂梁上的部分)對(duì)應(yīng)變和溫度都敏感;另一個(gè)反射峰(未粘貼部分)只對(duì)溫度敏感,通過測(cè)量這2個(gè)反射峰的波長(zhǎng)漂移可以同時(shí)測(cè)量溫度和應(yīng)變。