中文名 | 胡克定理 | 胡克定理 | |
---|---|---|---|
彈性物體 | 應(yīng)變成正比 | 彈簧所受 | 形變量成正比 |
80*80+50*50后開(kāi)方。
首先更正一下,是弦切角,老沈瞎說(shuō)呢。你把圖畫(huà)出來(lái),AB是圓O切線,AC是弦。做過(guò)切點(diǎn)A的直徑,交圓O于A、D。連接B、D。證明:因?yàn)锳D是圓O直徑,AB是圓O切線所以∠C=90°=∠BAD所以∠BAC...
沒(méi)有圓切角定理,只有弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角
香農(nóng)定理用來(lái)求信道的最大傳輸速率,即信道容量,當(dāng)通過(guò)信道的信號(hào)速率超過(guò)香農(nóng)定理的信道容量時(shí),誤碼率顯著提高,信息質(zhì)量嚴(yán)重下降。需要指出的是這里的信道容量只是理論上可以達(dá)到的極限,實(shí)際如何達(dá)到,該定理不能說(shuō)明。
割線定理
從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓交點(diǎn)的距離的積相等。
從圓外一點(diǎn)P引兩條割線與圓分別交于C,B,D,E,則有 PC·PB=PD·PE。如下圖所示。 (PA是切線)
Secant Theorem
割線定理為圓冪定理之一(切割線定理推論),其他二為:
切割線定理
相交弦定理
如圖直線PB和PE是自點(diǎn)P引的⊙O的兩條割線,則PC·PB=PD·PE.
證明:連接CE、DB
∵∠E和∠B都對(duì)弧CD
∴由圓周角定理,得 ∠E=∠B
又∵∠EPC=∠BPD
∴△PCE∽△PDB
∴PC:PD=PE:PB, 也就是PC·PB=PD·PE.
割線定理與相交弦定理,切割線定理通稱為圓冪定理。
相交弦定理、切割線定理以及它們的推論統(tǒng)稱為圓冪定理。一般用于求線段長(zhǎng)度。