伽利略望遠鏡望遠鏡
望遠鏡是一種利用凹透鏡和凸透鏡觀測遙遠物體的光學儀器。利用通過透鏡的光線折射或光線被凹鏡反射使之進入小孔并會聚成像,再經(jīng)過一個放大目鏡而被看到,又稱"千里鏡"。 | |
伽利略望遠鏡:人類歷史上第一臺天文望遠鏡,由意大利天文學家、物理學家伽利略1609年發(fā)明 | 伽利略望遠鏡 |
牛頓望遠鏡:誕生于1668年,用2.5cm直徑的金屬,磨制成一塊凹面反射鏡,并在主鏡的焦點前面放置了一個與主鏡成45度角的反射鏡,使經(jīng)主鏡反射后的會聚光經(jīng)反射鏡以90度角反射出鏡筒后到達目鏡,這種系統(tǒng)稱為牛頓式反射望遠鏡。 | 牛頓望遠鏡 |
赫歇爾望遠鏡:誕生于18世紀晚期,由德國音樂師和天文學家威廉-赫歇爾制造。 | 赫歇爾望遠鏡 |
耶基斯折射望遠鏡:坐落于美國威斯康星州的耶基斯天文臺,主透鏡建成于1895年,是當時世界上最大望遠鏡。 | 耶基斯折射望遠鏡 |
威爾遜山望遠鏡:1908年,美國天文學家喬治-埃勒里-海耳主持建成了口徑60英寸的反射望遠鏡,安裝于威爾遜山。 | 威爾遜山望遠鏡 |
胡克望遠鏡:在富商約翰-胡克的贊助下,口徑為100英寸的反射望遠鏡于1917年在威爾遜山天文臺建成。 | 胡克望遠鏡 |
海爾望遠鏡:望遠鏡在1948年完成,直到1980年代初期,BTA-6望遠鏡能夠運作之前,海爾望遠鏡一直是世界最大的望遠鏡。 | 海爾望遠鏡 |
甚大陣射電望遠鏡:甚大陣射電望遠鏡坐落于美國新墨西哥州索科洛,于1980年建成并投入使用。 | 甚大陣射電望遠鏡 |
哈勃太空望遠鏡:是以天文學家哈勃為名,在軌道上環(huán)繞著地 球的望遠鏡,于1990年發(fā)射。 | 哈勃太空望遠鏡 |
凱克望遠鏡:凱克望遠鏡有兩臺,分別建造于1991年和1996年,像足球那樣的圓頂有11層樓高,凱克是以它的出資建造者來命名的。 | 凱克望遠鏡 |
斯隆望遠鏡:"斯隆數(shù)字天空勘測計劃"的2.5米望遠鏡位于美國新墨西哥州阿柏角天文臺。該望遠鏡擁有一個相當復雜的數(shù)字相機,望遠鏡內(nèi)部是30個電荷耦合器件(CCD)探測器。 | 斯隆望遠鏡 |
開普勒望遠鏡:由德國科學家約翰內(nèi)斯·開普勒(Johannes Kepler)于1611年發(fā)明。 | 開普勒望遠鏡 |
阿雷西博望遠鏡:世界上最大的單面口徑射電望遠鏡,直徑達305米,后擴建為350米,由康奈爾大學管理。 | 阿雷西博望遠鏡 |
卡塞格林望遠鏡:由兩塊反射鏡組成的一種反射望遠鏡,1672年為卡塞格林所發(fā)明。 |
伽利略望遠鏡原理
伽利略望遠鏡(Galileo telescope)是指物鏡是會聚透鏡,而目鏡是發(fā)散透鏡的望遠鏡。
光線經(jīng)過物鏡折射所成的實像在目鏡的后方(靠近人目的后方)焦點上,這像對目鏡是一個虛像,因此經(jīng)它折射后成一放大的正立虛像。伽利略望遠鏡的放大率等于物鏡焦距與目鏡焦距的比值。其優(yōu)點是鏡筒短而能成正像,但它的視野比較小。
把兩個放大倍數(shù)不高的伽利略望遠鏡并列一起、中間用一個螺栓鈕可以同時調(diào)節(jié)其清晰程度的裝置,稱為"觀劇鏡";因攜帶方便,常用以觀看表演等。
伽利略發(fā)明的望遠鏡在人類認識自然的歷史中占有重要地位。它由一個凹透鏡(目鏡)和一個凸透鏡(物鏡)構成。其優(yōu)點是結構簡單,能直接成正像。
你可以用很低的費用制作一架伽利略式望遠鏡。從文化用品商店買一塊直徑、焦距大一些的眼鏡片作為物鏡和一塊焦距、直徑較小的透鏡作為目鏡。用膠水和小槽把兩塊鏡片裝在硬紙筒內(nèi),再做一個簡單的臺座,于是一架能夠看到月亮上的群山、銀河中的繁星和木星的衛(wèi)星的望遠鏡便制成了。想想看,伽利略就是用這個發(fā)現(xiàn)的。
但是切記,不要通過望遠鏡直接觀察太陽,以免高溫灼傷眼睛!
伽利略的折射望遠鏡有一個令人討厭的缺點,就是在明亮物體周圍產(chǎn)生"假色"。"假色"產(chǎn)生的癥結在于通常所謂的"白光"根本不是白顏色的光,而是由組成彩虹的從紅到紫的所有色光混合而成的。當光束進入物鏡并被折射時,各種色光的折射程度不同,因此成像的焦點也不同,模糊就產(chǎn)生了。
你可以用很低的費用制作一架伽利略式望遠鏡。從商店買一塊直徑、焦距大一些的眼鏡片作為物鏡和一塊焦距、直徑較小的透鏡作為目鏡。用膠水和小槽把兩塊鏡片裝在硬紙筒內(nèi),再做一個簡單的臺座,于是一架能夠看到月亮上的群山、銀河中的繁星和木星的衛(wèi)星的望遠鏡便制成了。想但是切記,不要通過望遠鏡直接觀察太陽,以免高溫灼傷眼睛!
絕對是,首先觀景和觀鳥,顯然是用看更舒適,便攜性也更好,單筒用的時間長了眼睛容易疲勞,而且沒有視覺的成像疊加作用也會影響到畫面的立體感(你在電捂住一只眼看空間變化幅度較大的畫面就能體會到了)。 而且...
入門玩一下的話幾百塊的就可以 好的要多貴有多貴
(一)種類(Porro Prusm vs Roof Prism) 望遠鏡可分為...
伽利略望遠鏡觀測成果
他先觀測到了月球的高地和環(huán)形山投下的陰影,接著又發(fā)現(xiàn)了太陽黑子,此外還發(fā)現(xiàn)了木星的4個最大的衛(wèi)星。 自那以后,科學技術已經(jīng)獲得了長足進步,光學技術的騰飛促使科學儀器不斷更新。當今最先進的地面望遠鏡具有龐大的結構,直徑達10米的靈活轉(zhuǎn)動鏡片。然而,現(xiàn)代高級的天文望遠鏡都是在前 人基礎上發(fā)展起來的。
1609年的秋天,身兼帕多瓦大學數(shù)學、科學和天文學教授的伽利略,制作出了一個放大倍數(shù)為32倍的望遠鏡。伽利略將鏡頭首次對準了月球,這是人類首次對月面進行科學觀測。
1610年1月7日,伽利略發(fā)現(xiàn)了木星的四顆衛(wèi)星,為哥白尼學說找到了確鑿的證據(jù),標志著哥白尼學說開始走向勝利。借助于望遠鏡,伽利略還先后發(fā)現(xiàn)了土星光環(huán)、太陽黑子、太陽的自轉(zhuǎn)、金星和水星的盈虧現(xiàn)象、月球的周日和周月天平動,以及銀河是由無數(shù)恒星組成等等。
這些發(fā)現(xiàn)開辟了天文學的新時代,近代天文學的大門被打開了。
伽利略望遠鏡工作原理
物鏡是會聚透鏡而目鏡是發(fā)散透鏡的望遠鏡。光線經(jīng)過物鏡折射所成的實像在目鏡的后方(靠近人目的后方)焦點上,這像對目鏡是一個虛像,因此經(jīng)它折射后成一放大的正立虛像。伽利略望遠鏡的放大率等于物鏡焦距與目鏡焦距的比值。其優(yōu)點是鏡筒短而能成正像,但它的視野比較小。
格式:pdf
大小:1.6MB
頁數(shù): 5頁
評分: 4.6
主鏡面型精度是地基大口徑望遠鏡最關鍵的技術指標之一。為了研究主鏡室以及主鏡底支撐和側(cè)支撐系統(tǒng)的重力變形造成的主鏡面型誤差,介紹了一地基光電望遠鏡的主鏡室及詳細的主鏡支撐結構,借助于有限元法,建立了主鏡,主鏡室和支撐結構的詳細有限元模型,分析計算了主鏡在支撐狀態(tài)下的鏡面變形情況,并通過ZYGO干涉儀進行了面型檢測。計算結果和實測結果對比,說明了主鏡室及其支撐結構引入的主鏡面型誤差大小,同時也驗證了有限元模型的正確性。
格式:pdf
大小:1.6MB
頁數(shù): 3頁
評分: 4.3
從生產(chǎn)用原材料、配方、生產(chǎn)工藝及影響因素等方面介紹了軟質(zhì)PVC在望遠鏡用外裝飾皮中的應用,并進行了分析、探討,提出了軟質(zhì)PVC在望遠鏡用外裝飾皮中研制開發(fā)的看法與建議。
伽利略螺線亦稱等加速螺線,是一種特殊曲線,極坐標方程為ρ=aθ2 bθ c(a≠0)的曲線稱為伽利略螺線(見圖,b=c=0的情形),伽利略螺線是17世紀發(fā)現(xiàn)的,在地球赤道某地的上方有一個自由落體,當它隨地球一起轉(zhuǎn)動時,畫出的曲線就是伽利略螺線,它是動點沿著一條定直線作等加速運動,同時這條直線又繞著它上面一點作等角速度旋轉(zhuǎn)時,動點的軌跡 。
天文望遠鏡種類介紹
1.伽利略式望遠鏡
1609年,伽利略制作了一架口徑4.2厘米,長約12厘米的望遠鏡。他是用平凸透鏡作為物鏡,凹透鏡作為目鏡, 這種光學系統(tǒng)稱為伽利略式望遠鏡。伽利略用這架望遠鏡指向天空,得到了一系列的重要發(fā)現(xiàn),天文學從此進入了望遠鏡時代。
2.開普勒式望遠鏡
1611年,德國天文學家開普勒用兩片雙凸透鏡分別作為物鏡和目鏡,使放大倍數(shù)有了明顯的提高,以后人們將這種光學系統(tǒng)稱為開普勒式望遠鏡?,F(xiàn)在人們用的折射式望遠鏡還是這兩種形式,天文望遠鏡是采用開普勒式。
3.施密特式折反射望遠鏡
折反射式望遠鏡最早出現(xiàn)于1814年。1931年,德國光學家施密特用一塊別具一格的接近于平行板的非球面薄透鏡作為改正鏡,與球面反射鏡配合,制成了可以消除球差和軸外象差的施密特式折反射望遠鏡,這種望遠鏡光力強、視場大、象差小,適合于拍攝大面積的天區(qū)照片,尤其是對暗弱星云的拍照效果非常突出。施密特望遠鏡已經(jīng)成了天文觀測的重要工具。
4.馬克蘇托夫式
1940年馬克蘇托夫用一個彎月形狀透鏡作為改正透鏡,制造出另一種類型的折反射望遠鏡,它的兩個表面是兩個曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均為球面,比施密特式望遠鏡的改正板容易磨制,鏡筒也比較短,但視場比施密特式望遠鏡小,對玻璃的要求也高一些。
由于折反射式望遠鏡能兼顧折射和反射兩種望遠鏡的優(yōu)點,非常適合業(yè)余的天文觀測和天文攝影,并且得到了廣大天文愛好者的喜愛。
5.歐洲甚大望遠鏡
歐洲南方天文臺自1986年開始研制由4臺8米口徑望遠鏡組成一臺等效口徑為16米的光學望遠鏡(VLT)。這4臺8米望遠鏡排列在一條直線上,它們均為RC光學系統(tǒng),焦比是F/2,采用地平裝置,主鏡采用主動光學系統(tǒng)支撐,指向精度為1″,跟蹤精度為0.05″,鏡筒重量為100噸,叉臂重量不到120噸。這4臺望遠鏡可以組成一個干涉陣,做兩兩干涉觀測,也可以單獨使用每一臺望遠鏡。
6.雙子望遠鏡
雙子望遠鏡(GEMINI)是以美國為主的一項國際設備(其中,美國占50%,英國占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美國大學天文聯(lián)盟(AURA)負責實施。它由兩個8米望遠鏡組成,一個放在北半球,一個放在南半球,以進行全天系統(tǒng)觀測。其主鏡采用主動光學控制,副鏡作傾斜鏡快速改正,還將通過自適應光學系統(tǒng)使紅外區(qū)接近衍射極限。
7.日本昴星團望遠鏡
這是一臺8米口徑的光學/紅外望遠鏡(SUBARU)。它有三個特點:一是鏡面薄,通過主動光學和自適應光學獲得較高的成象質(zhì)量;二是可實現(xiàn)0.1″的高精度跟蹤;三是采用圓柱形觀測室,自動控制通風和空氣過濾器,使熱湍流的排除達到最佳條件。此望遠鏡采用Serrurier桁架,可使主鏡框與副鏡框在移動中保持平行。大天區(qū)多目標光纖光譜望遠鏡LAMOST(郭守敬) 這是中國已建成的一架有效通光口徑為4米、焦距為20米、視場達20平方度的中星儀式的反射施密特望遠鏡。
它的技術特色是:
1.把主動光學技術應用在反射施密特系統(tǒng),在跟蹤天體運動中作實時球差改正,實現(xiàn)大口徑和大視場兼?zhèn)涞墓δ堋?/p>
2.球面主鏡和反射鏡均采用拼接技術。
3.多目標光纖(可達4000根,一般望遠鏡只有600根)的光譜技術將是一個重要突破。
LAMOST把普測的星系極限星等推到20.5m,比SDSS計劃高2等左右,實現(xiàn)107個星系的光譜普測,把觀測目標的數(shù)量提高1個量級 。
8.射電望遠鏡
1932年央斯基(Jansky.K.G)用無線電天線探測到來自銀河系中心(人馬座方向)的射電輻射,這標志著人類打開了在傳統(tǒng)光學波段之外進行觀測的第一個窗口。
第二次世界大戰(zhàn)結束后,射電天文學脫穎而出,射電望遠鏡為射電天文學的發(fā)展起了關鍵的作用,比如:六十年代天文學的四大發(fā)現(xiàn),類星體,脈沖星,星際分子和宇宙微波背景輻射,都是用射電望遠鏡觀測得到的。射電望遠鏡的每一次長足的進步都會毫無例外地為射電天文學的發(fā)展樹立一個里程碑。
英國曼徹斯特大學于1946年建造了直徑為66.5米的固定式拋物面射電望遠鏡,1955年又建成了當時世界上最大的可轉(zhuǎn)動拋物面射電望遠鏡;六十年代,美國在波多黎各阿雷西博鎮(zhèn)建造了直徑達305米的拋物面射電望遠鏡,它是順著山坡固定在地表面上的,不能轉(zhuǎn)動,這是世界上最大的單孔徑射電望遠鏡。
1962年,Ryle發(fā)明了綜合孔徑射電望遠鏡,他也因此獲得了1974年諾貝爾物理學獎。綜合孔徑射電望遠鏡實現(xiàn)了由多個較小天線結構獲得相當于大口徑單天線所能取得的效果。
1967年Broten等人第一次記錄到了VLBI干涉條紋。
七十年代,聯(lián)邦德國在玻恩附近建造了100米直徑的全向轉(zhuǎn)動拋物面射電望遠鏡,這是世界上最大的可轉(zhuǎn)動單天線射電望遠鏡。
八十年代以來,歐洲的VLBI網(wǎng)(EVN),美國的VLBA陣,日本的空間VLBI(VSOP)相繼投入使用,這是新一代射電望遠鏡的代表,它們在靈敏度、分辨率和觀測波段上都大大超過了以往的望遠鏡。
中國科學院上海天文臺和烏魯木齊天文站的兩架25米射電望遠鏡作為正式成員參加了美國的地球自轉(zhuǎn)連續(xù)觀測計劃(CORE)和歐洲的甚長基線干涉網(wǎng)(EVN),這兩個計劃分別用于地球自轉(zhuǎn)和高精度天體測量研究(CORE)和天體物理研究(EVN)。這種由各國射電望遠鏡聯(lián)合進行長基線干涉觀測的方式,起到了任何一個國家單獨使用大望遠鏡都不能達到的效果。
9.哈勃空間望遠鏡
哈勃空間望遠鏡(HST),這是由美國宇航局主持建造的四座巨型空間天文臺中的第一座,也是所有天文觀測項目中規(guī)模最大、投資最多、最受到公眾注目的一項。它籌建于1978年,設計歷時7年,1989年完成,并于1990年4月25日由航天飛機運載升空,耗資30億美元。但是由于人為原因造成的主鏡光學系統(tǒng)的球差,不得不在1993年12月2日進行了規(guī)模浩大的修復工作。成功的修復使HST性能達到甚至超過了原先設計的目標,觀測結果表明,它的分辨率比地面的大型望遠鏡高出幾十倍。
1997年的維修中,為HST安裝了第二代儀器:有空間望遠鏡成象光譜儀、近紅外照相機和多目標攝譜儀,把HST的觀測范圍擴展到了近紅外并提高了紫外光譜上的效率。
1999年12月的維修為HST更換了陀螺儀和新的計算機,并安裝了第三代儀器――高級普查攝像儀,這將提高HST在紫外-光學-近紅外的靈敏度和成圖的性能。
HST對國際天文學界的發(fā)展有非常重要的影響。
10.空間天文望遠鏡
"下一代大型空間望遠鏡"(NGST)和"空間干涉測量飛行任務"(SIM)是NASA"起源計劃"的關鍵項目,用于探索在宇宙最早期形成的第一批星系和星團。其中,NGST是大孔徑被動制冷望遠鏡,口徑在4~8米之間,是HST和SIRTF(紅外空間望遠鏡)的后續(xù)項目。它強大的觀測能力特別體現(xiàn)在光學、近紅外和中紅外的大視場、衍射限成圖方面。將運行于近地軌道的SIM采用邁克爾干涉方案,提供毫角秒級精度的恒星的精密絕對定位測量,同時由于具有綜合成圖能力,能產(chǎn)生高分辨率的圖象,所以可以用于實現(xiàn)搜索其它行星等科學目的。
道布森式望遠鏡原理
值得注意的是道布森式望遠鏡并不是與伽利略望遠鏡、開普勒望遠鏡或牛頓望遠鏡并列的另一種光學結構分類。 道布森式望遠鏡僅指支架,沒有限制光學結構。但一般在牛頓式反射望遠鏡上用得較多。