書????名 | 流動中的力量 | 作????者 | (日)小峰龍男 |
---|---|---|---|
譯????者 | 高丕娟 | 出版社 | 科學(xué)出版社 |
出版時間 | 2012-07 | ISBN | 9787030345417 |
第1章 流體的性質(zhì)
第2章 流體性質(zhì)的應(yīng)用
第3章 流體流動的性質(zhì)
第4章 運動流體的性質(zhì)
第5章 日?,F(xiàn)象和流體的運動
第6章 流體機械
參考文獻
本書將從流體的性質(zhì)、流體的基本運動以及流體力學(xué)在實際生活中的應(yīng)用等方面出發(fā),從不同的領(lǐng)域來介紹流體力學(xué)。
《流體力學(xué)與水泵實驗教程》結(jié)合環(huán)境、給排水、建筑、土木、機械、采礦、交通等專業(yè)的流體力學(xué)、水力學(xué)及水泵與水泵站課程的教學(xué)要求,按照各專業(yè)最新的實驗教學(xué)大綱編寫。內(nèi)容包括流體靜力學(xué)實驗,不可壓縮流體恒定...
周謨?nèi)手骶帲读黧w力學(xué)泵與風(fēng)機》,中國建筑工業(yè)出版社出版 付祥釗主編,《流體輸配管網(wǎng)》,中國建筑工業(yè)出版社出版 蔡增基主編,《流體力學(xué)泵與風(fēng)機》第5版 那你可查看: 陳耀宗、姜文源等主編的《建筑給水排...
壓縮系數(shù)中的1/V表示壓縮系數(shù)是指流體單位體積的壓縮程度。取單位體積的壓縮程度才能反映不同流體或相同流體在不同外界環(huán)境下被壓縮的真實程度。比如,一億升的空氣被壓縮了2升的體積和10升空氣被壓縮了1升,...
格式:pdf
大小:24KB
頁數(shù): 2頁
評分: 4.6
工程流體力學(xué)論文 丹尼爾·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理學(xué)家、 數(shù)學(xué)家、醫(yī)學(xué)家。 1700年 2月 8日生于荷蘭格羅寧根。著名的伯努 利家族中最杰出的一位。他是數(shù)學(xué)家 J.伯努利的次子,和他的父輩 一樣,違背家長要他經(jīng)商的愿望,堅持學(xué)醫(yī),他曾在海得爾貝格、斯 脫思堡和巴塞爾等大學(xué)學(xué)習(xí)哲學(xué)、論理學(xué)、醫(yī)學(xué)。 1721年取得醫(yī)學(xué) 碩士學(xué)位。努利在 25歲時 (1725) 就應(yīng)聘為圣彼得堡科學(xué)院的數(shù)學(xué)院 士。8 年后回到瑞士的巴塞爾,先任解剖學(xué)教授,后任動力學(xué)教授, 1750年成為物理學(xué)教授。在 1725~1749年間,伯努利曾十次榮獲法 國科學(xué)院的年度獎。 丹尼爾受父兄影響,一直很喜歡數(shù)學(xué)。 1724年,他在威尼斯旅途 中發(fā)表《數(shù)學(xué)練習(xí)》,引起學(xué)術(shù)界關(guān)注,并被邀請到圣彼得堡科學(xué)院 工作。同年,他還用變量分離法解決了微分方程中的里卡提方程。 在伯努利家族中
格式:pdf
大小:24KB
頁數(shù): 13頁
評分: 4.3
離心通風(fēng)機氣體流動的流體力學(xué)分析 摘要 :本文從流體力學(xué)的角度進行了詳盡的分析研究,介紹了風(fēng)機的選型對抽風(fēng) 量的影響,探討了管路系統(tǒng)中的摩擦阻力、局部阻力、風(fēng)管直徑大小、彎頭的曲 率半徑等對風(fēng)量風(fēng)壓的影響; 同時介紹了離心風(fēng)機特性、 抽風(fēng)系統(tǒng)的管網(wǎng)特性, 管網(wǎng)中實際阻力與風(fēng)機額定風(fēng)壓及風(fēng)量的關(guān)系;應(yīng)用計算流體力學(xué)軟件 FLUENT 對 4-73 №10D離心式通風(fēng)機內(nèi)部的三維氣體流動進行了數(shù)值模擬分析,重點分 析了各個部分的壓強和速度分布。 關(guān)鍵詞: 管網(wǎng)特性;離心式通風(fēng)機;三維數(shù)值模擬;壓力場;流場 1 引言 由于通風(fēng)機流場的試驗測量存在許多難, 使得數(shù)值模擬成為研究葉輪機械流 場的一種重要手段。 隨著計算流體力學(xué)和計算機的快速發(fā)展, 流體機械的內(nèi)部流 場研究有了很大的進展,從二維、準三維流動發(fā)展到全三維流動。 Guo 和 Kim 用定常和非定常的三維 RANS 方法分析了前向離心通
流體力學(xué)研究 International Journal of Fluid Dynamics 是一本關(guān)注流體力學(xué)領(lǐng)域最新進展的國際中文期刊,由漢斯出版社編輯發(fā)行。主要刊登流體力學(xué)領(lǐng)域最新技術(shù)及成果展示的相關(guān)學(xué)術(shù)論文。支持思想創(chuàng)新、學(xué)術(shù)創(chuàng)新,倡導(dǎo)科學(xué),繁榮學(xué)術(shù),集學(xué)術(shù)性、思想性為一體,旨在為了給世界范圍內(nèi)的科學(xué)家、學(xué)者、科研人員提供一個傳播、分享和討論流體力學(xué)領(lǐng)域內(nèi)不同方向問題與發(fā)展的交流平臺。
研究領(lǐng)域:
流體力學(xué)研究
流體力學(xué)
理論流體力學(xué)
水動力學(xué)
氣體動力學(xué)
空氣動力學(xué)
懸浮體力學(xué)
湍流理論
粘性流體力學(xué)
多相流體力學(xué)
滲流力學(xué)
物理-化學(xué)流體力學(xué)
等離子體動力學(xué)
電磁流體力學(xué)
非牛頓流體力學(xué)
流體機械流體力學(xué)
旋轉(zhuǎn)與分層流體力學(xué)
輻射流體力學(xué)
計算流體力學(xué)
實驗流體力學(xué)
環(huán)境流體力學(xué)
微流體力學(xué)
流體力學(xué)其他學(xué)科
磁流體力學(xué)主要應(yīng)用于三個方面:天體物理、受控?zé)岷朔磻?yīng)和工業(yè)。
宇宙中恒星和星際氣體都是等離子體,而且有磁場,故磁流體力學(xué)首先在天體物理、太陽物理和地球物理中得到發(fā)展和應(yīng)用。當(dāng)前,關(guān)于太陽的研究課題有:太陽磁場的性質(zhì)和起源,磁場對日冕、黑子、耀斑的影響。此外還有:星際空間無作用力場存在的可能性,太陽風(fēng)與地球磁場相互作用產(chǎn)生的弓形激波,新星、超新星的爆發(fā),地球磁場的起源,等等。
受控?zé)岷朔綉?yīng)方面 這方面的應(yīng)用有可能使人類從海水中的氘獲取巨大能源。受控?zé)岷朔磻?yīng)的目的就是把輕元素組成的氣體加熱到足夠發(fā)生核聚變的高溫,并約束它足夠的時間,以使核反應(yīng)產(chǎn)生的能量大于所消耗的能量。對氘、氚混合氣來說,要求溫度達到5000萬到1億開并要求粒子密度和約束時間的乘積不小于10秒/厘米(勞孫條件)。托卡馬克(環(huán)形磁約束裝置)在受控?zé)岷朔磻?yīng)研究中顯出優(yōu)越性。美、蘇和一些西歐國家各自在托卡馬克的研究上取得進展,但只得到單項指標(biāo)滿足勞孫條件的等離子體,沒有得到溫度、密度和約束時間都滿足勞孫條件的等離子體。磁鏡、托卡馬克和其他磁約束裝置的運行范圍都受穩(wěn)定性的限制,即電流或粒子密度越大,穩(wěn)定性越差,所以必須開展對等離子體中的平衡和大尺度不穩(wěn)定性預(yù)測的磁流體力學(xué)研究,以期得到穩(wěn)定的并充分利用磁場的托卡馬克磁約束裝置。
磁流體力學(xué)除了與開發(fā)和利用核聚變能有關(guān)外,還與磁流體發(fā)電密切聯(lián)系。磁流體發(fā)電的原理是用等離子體取代發(fā)電機轉(zhuǎn)子,省去轉(zhuǎn)動部件,這樣可以把普通火力發(fā)電站或核電站的效率提高15?20%,甚至更高,既可節(jié)省能源,又能減輕污染。為了提高磁流體發(fā)電裝罝的熱效率,必須運用磁流體力學(xué)來分析發(fā)電通道中的流動規(guī)律,傳熱、傳質(zhì)規(guī)律和電特性。研究利用煤粉作燃料的磁流體發(fā)電對產(chǎn)煤豐富的國家有重要意義,這種研究目前正向工業(yè)發(fā)電階段發(fā)展。蘇聯(lián)已實現(xiàn)天然氣磁流體發(fā)電。
用導(dǎo)電流體取代電動機轉(zhuǎn)子的設(shè)備,即用磁力驅(qū)動導(dǎo)電流體的裝置有電磁泵和磁流體力學(xué)空間推進器(見電磁推進)。電磁泵已用于核能動力裝置中傳熱回路內(nèi)液態(tài)金屬的傳輸,冶金和鑄造工業(yè)中熔融金屬的自動定量澆注和攪拌,化學(xué)工業(yè)中汞、鉀、鈉等有害和危險流體的輸送等方面。電磁推進研究用磁場力加速等離子體以期得到比化學(xué)火箭大得多的比沖。
飛行器再入大氣層時,激波、空氣對飛行器的摩擦,使飛行器的表面空氣受熱而電離成為等離子體,因此利用磁場可以控制對飛行器的傳熱和阻力。但由于磁場裝置過重,這種設(shè)想尚未能實現(xiàn)。
此外,電磁流量計、電磁制動、電磁軸承理論、電磁激波管等也是磁流體力學(xué)在工業(yè)應(yīng)用上所取得的成就。
關(guān)于低溫等離子體技術(shù),見等離于體的工業(yè)應(yīng)用。
出現(xiàn)
流體力學(xué)是在人類同自然界作斗爭和在生產(chǎn)實踐中逐步發(fā)展起來的。中國有大禹治水疏通江河的傳說。秦朝李冰父子(公元前3世紀)領(lǐng)導(dǎo)勞動人民修建了都江堰,至今還在發(fā)揮作用。大約與此同時,羅馬人建成了大規(guī)模的供水管道系統(tǒng)。
對流體力學(xué)學(xué)科的形成作出貢獻的首先是古希臘的阿基米德。他建立了包括物體浮力定理和浮體穩(wěn)定性在內(nèi)的液體平衡理論,奠定了流體靜力學(xué)的基礎(chǔ)。此后千余年間,流體力學(xué)沒有重大發(fā)展。
15世紀意大利達·芬奇的著作才談到水波、管流、水力機械、鳥的飛翔原理等問題。
17世紀,帕斯卡闡明了靜止流體中壓力的概念。但流體力學(xué)尤其是流體動力學(xué)作為一門嚴密的科學(xué),卻是隨著經(jīng)典力學(xué)建立了速度、加速度,力、流場等概念,以及質(zhì)量、動量、能量三個守恒定律的奠定之后才逐步形成的。
發(fā)展
17世紀力學(xué)奠基人I. 牛頓研究了在液體中運動的物體所受到的阻力,得到阻力與流體密度、物體迎流截面積以及運動速度的平方成正比的關(guān)系。他對粘性流體運動時的內(nèi)摩擦力也提出了以下假設(shè):即兩流體層間的摩阻應(yīng)力同此兩層的相對滑動速度成正比而與兩層間的距離成反比(即牛頓粘性定律)。
之后,法國H. 皮托發(fā)明了測量流速的皮托管;達朗貝爾對運河中船只的阻力進行了許多實驗工作,證實了阻力同物體運動速度之間的平方關(guān)系;瑞士的L. 歐拉采用了連續(xù)介質(zhì)的概念,把靜力學(xué)中壓力的概念推廣到運動流體中,建立了歐拉方程,正確地用微分方程組描述了無粘流體的運動;伯努利從經(jīng)典力學(xué)的能量守恒出發(fā),研究供水管道中水的流動,精心地安排了實驗并加以分析,得到了流體定常運動下的流速、壓力、管道高程之間的關(guān)系——伯努利方程。
歐拉方程和伯努利方程的建立,是流體動力學(xué)作為一個分支學(xué)科建立的標(biāo)志,從此開始了用微分方程和實驗測量進行流體運動定量研究的階段。
從18世紀起,位勢流理論有了很大進展,在水波、潮汐、渦旋運動、聲學(xué)等方面都闡明了很多規(guī)律。法國J.-L. 拉格朗日對于無旋運動,德國H. von 亥姆霍茲對于渦旋運動作了不少研究.上述的研究中,流體的粘性并不起重要作用,即所考慮的是無粘流體,所以這種理論闡明不了流體中粘性的效應(yīng)。
理論基礎(chǔ)
將粘性考慮在內(nèi)的流體運動方程則是法國C.-L.-M.-H. 納維于1821年和英國G. G. 斯托克斯于1845年分別建立的,后得名為納維-斯托克斯方程,它是流體動力學(xué)的理論基礎(chǔ)。
由于納維-斯托克斯方程是一組非線性的偏微分方程,用分析方法來研究流體運動遇到很大困難。為了簡化方程,學(xué)者們采取了流體為不可壓縮和無粘性的假設(shè),卻得到違背事實的達朗伯佯謬——物體在流體中運動時的阻力等于零。因此,到19世紀末,雖然用分析法的流體動力學(xué)取得很大進展,但不易起到促進生產(chǎn)的作用。
與流體動力學(xué)平行發(fā)展的是水力學(xué)(見液體動力學(xué))。這是為了滿足生產(chǎn)和工程上的需要,從大量實驗中總結(jié)出一些經(jīng)驗公式來表達流動參量之間關(guān)系的經(jīng)驗科學(xué)。
使上述兩種途徑得到統(tǒng)一的是邊界層理論。它是由德國L. 普朗特在1904年創(chuàng)立的。普朗特學(xué)派從1904年到1921年逐步將N-S方程作了簡化,從推理、數(shù)學(xué)論證和實驗測量等各個角度,建立了邊界層理論,能實際計算簡單情形下,邊界層內(nèi)流動狀態(tài)和流體同固體間的粘性力。同時普朗克又提出了許多新概念,并廣泛地應(yīng)用到飛機和汽輪機的設(shè)計中去。這一理論既明確了理想流體的適用范圍,又能計算物體運動時遇到的摩擦阻力。使上述兩種情況得到了統(tǒng)一。
飛機和空氣動力學(xué)的發(fā)展
20世紀初,飛機的出現(xiàn)極大地促進了空氣動力學(xué)的發(fā)展。航空事業(yè)的發(fā)展,期望能夠揭示飛行器周圍的壓力分布、飛行器的受力狀況和阻力等問題,這就促進了流體力學(xué)在實驗和理論分析方面的發(fā)展。20世紀初,以茹科夫斯基、恰普雷金、普朗特等為代表的科學(xué)家,開創(chuàng)了以無粘不可壓縮流體位勢流理論為基礎(chǔ)的機翼理論,闡明了機翼怎樣會受到舉力,從而空氣能把很重的飛機托上天空。機翼理論的正確性,使人們重新認識無粘流體的理論,肯定了它指導(dǎo)工程設(shè)計的重大意義。
機翼理論和邊界層理論的建立和發(fā)展是流體力學(xué)的一次重大進展,它使無粘流體理論同粘性流體的邊界層理論很好地結(jié)合起來。隨著汽輪機的完善和飛機飛行速度提高到每秒50米以上,又迅速擴展了從19世紀就開始的,對空氣密度變化效應(yīng)的實驗和理論研究,為高速飛行提供了理論指導(dǎo)。20世紀40年代以后,由于噴氣推進和火箭技術(shù)的應(yīng)用,飛行器速度超過聲速,進而實現(xiàn)了航天飛行,使氣體高速流動的研究進展迅速,形成了氣體動力學(xué)、物理-化學(xué)流體動力學(xué)等分支學(xué)科。
分支和交叉學(xué)科的形成
從20世紀60年代起,流體力學(xué)開始了流體力學(xué)和其他學(xué)科的互相交叉滲透,形成新的交叉學(xué)科或邊緣學(xué)科,如物理-化學(xué)流體動力學(xué)、磁流體力學(xué)等;原來基本上只是定性地描述的問題,逐步得到定量的研究,生物流變學(xué)就是一個例子。
以這些理論為基礎(chǔ),20世紀40年代,關(guān)于炸藥或天然氣等介質(zhì)中發(fā)生的爆轟波又形成了新的理論,為研究原子彈、炸藥等起爆后,激波在空氣或水中的傳播,發(fā)展了爆炸波理論。此后,流體力學(xué)又發(fā)展了許多分支,如高超聲速空氣動力學(xué)、超音速空氣動力學(xué)、稀薄空氣動力學(xué)、電磁流體力學(xué)、計算流體力學(xué)、兩相(氣液或氣固)流等等。
這些巨大進展是和采用各種數(shù)學(xué)分析方法和建立大型、精密的實驗設(shè)備和儀器等研究手段分不開的。從50年代起,電子計算機不斷完善,使原來用分析方法難以進行研究的課題,可以用數(shù)值計算方法來進行,出現(xiàn)了計算流體力學(xué)這一新的分支學(xué)科。與此同時,由于民用和軍用生產(chǎn)的需要,液體動力學(xué)等學(xué)科也有很大進展。
20世紀60年代,根據(jù)結(jié)構(gòu)力學(xué)和固體力學(xué)的需要,出現(xiàn)了計算彈性力學(xué)問題的有限元法。經(jīng)過十多年的發(fā)展,有限元分析這項新的計算方法又開始在流體力學(xué)中應(yīng)用,尤其是在低速流和流體邊界形狀甚為復(fù)雜問題中,優(yōu)越性更加顯著。21世紀以來又開始了用有限元方法研究高速流的問題,也出現(xiàn)了有限元方法和差分方法的互相滲透和融合。