Naim是英國名牌音響廠家,Naim給人的感覺是低調(diào)、沉實,不尚花巧,但用料精良,保證"靚聲",而價錢則比競爭對手貴出少許,但以價論貨,卻從來不會給人"搶錢"的感覺。因為Naim的用家通常都很忠心,甚少更換,要"升級"的話,也只會購買Naim的更高檔產(chǎn)品,故此Naim產(chǎn)制的音響器材很少在二手市場流通。
公司名稱 | Naim | 總部地點 | 英國 |
---|---|---|---|
經(jīng)營范圍 | 音響 | 公司性質(zhì) | 私營 |
naim制作
獨特的工廠制造流程
今天的Naim,在生產(chǎn)方式上有二處與眾不同,其一是從設(shè)計開始一直到最后成品測試,都在工廠內(nèi)自己一手完成。當然,這種作法需要很多的儀器與人才投資,不過它的好處是可以全程掌控,發(fā)現(xiàn)問題立刻改進。其二就是生產(chǎn)在線的工人并不是每個人只負責某部份的組裝,而是從零件的領(lǐng)取開始,就由同一個人從頭到尾把這件產(chǎn)品組裝起來,一直到成品測試完成。為什么要用這種方式呢。Naim說這樣工人在工作時會比較有樂趣與成就感。此外,冤有頭債有主,哪部產(chǎn)品出了毛病都可以去找負責人。
深圳市京立通訊器材有限公司的naim音響價格是460元 深圳市鑫業(yè)時代智能科技有限公司的naim音響價格是500元 深圳市天龍世紀科技發(fā)展有限公司的naim音響價格是480元 以上價格源于網(wǎng)絡(luò),僅供參...
naim功放個人感覺還是挺不錯的,功放使用的時候高低音都很純、沒有太多嘈雜的聲音,聲音也很飽滿,還原度很高。產(chǎn)品使用操作起來也很方便,即使剛使用的人也可以很快熟練。產(chǎn)品的外觀也是很有質(zhì)感的,設(shè)計非常簡...
krausnaimer轉(zhuǎn)換開關(guān)好不好用?
你好,krausnaimer轉(zhuǎn)換開關(guān)挺好用的,用轉(zhuǎn)換開關(guān)代替刀開關(guān) ??使用,不僅可使控制回路或測量回路簡化,并能避免操作上的差錯,還能夠減少使用元件的數(shù)量。是用轉(zhuǎn)換開關(guān)代替兩...
PartⅠ Thermo.responsiveHydrogeIFunctionaIMaterials
1Structure—Function Relationship ofThermo—responsive Hydrogels
1.1Introduction
1.2Effect oflnternal Microstructure on the Equilibrium Thermo—responsive Phase Transition
1.3Effect oflnternal Microstructure on the Dynamic Thermo—responsive Phase Transition
1.4Effect of Internal Microstructure on the Thermo—responsive Controlled—Release Characteristics
1.5 Effect oflnternal Microstructure on the MechanicalStrength of Thermo—responsive Hydrogels
1.6 Summary
References
2Preparation and Properties of Monodisperse Thermo—responsive Microgels
2.1Introduction
2.2Submicron—Sized Monodisperse Thermo—responsiveCore—Shell Hydrogel Microspheres Fabricated via Surfactant—Free Emulsion Polymerization
2.2.1 Preparation of P(NIPAM—co—St) Seeds
2.2.2Preparation of Core—Shell Microsphereswith PNIPAM Shell Layers
2.2.3 Monodispersity ofCore—Shell Microsphereswith P(NIPAM—co—St) Cores and PNIPAMShell Layers
2.2.4 Thermo—responsive Characteristicsof the Core—Shell Microspheres with PNIPAM Shell Layers
2.3 Positively Thermo—responsive Submicron—SizedMonodisperse Core—Shell Hydrogel Microspheres
2.3.1Preparation ofPositively Thermo—responsive Submicron—Sized Monodisperse Core—ShellHydrogelMicrospheres
2.3.2 Morphological Analyses of the Microspheres
2.3.3 Positively Thermosensitive Swelling Characteristics
2.4 Monodisperse Thermo—responsive HydrogelMicrospheres and Microcapsules Preparedvia Membrane Emulsification
2.4.1Strategies for Preparation ofMonodisperse PNIPAM Microspheres and Microcapsules via Membrane Emulsificatio
2.4.2Morphology of Prepared MonodispersePNIPAM Microspheres
2.4.3Morphology of Prepared Monodisperse PNIPAM Microcapsules
2.4.4 Effect of Freeze—Drying and RehydratingTreatment on the Thermo—responsiveCharacteristics of PNIPAM Microspheres
2.5 Monodisperse Thermo—responsive Hydrogel Microspheres and Microcapsules Fabricated with Microfluidics
2.5.1Microfluidic Fabrication ofMonodisperseThermo—responsive Microgels with TunableVolume—PhaseTran sitionKinetics
2.5.2 FabricationofMonodisperse Thermo—responsive Microgelsin a Microfluidic Chip
2.5.3Fabrication ofMonodisperse Microspheres with PNIPAM Core and Poly(2—HydroxyethylMethacrylate) (PHEMA) She
2.6 Summary
References
3 Flow and Aggregation Characteristics of Thermo—responsive Microgels During Phase Transition
3.1 Introduction
3.2Flo and Aggregation Characteristics of Thermo—responsive Spheres During the Phase Transition
3.2.1 Preparation of Monodisperse PNIPAMHydrogel Spheres
3.2.2Thermo—responsive Volume—Phase Transition Characteristics of PNIPAM Hydrogel Spheres
3.2.3 Flow Characteristics of PNIPAM HydrogelSpheres During the Phase Transitionin a Transparent Glass Pipe
3.3Flow Characteristics of Thermo—responsiveMicrospheres in Microchannel During the Phase Transition
3.3.1 Synthesis of Microspheres in a SimpleMicrofluidic Device
3.3.2 Flow Characteristics of PNIPAMMicrospheres in Horizontal Microchannel at Low Reynolds Number of Fluid
3.3.3 Effect of the Diameter Ratio of PNIPAMMicrosphere to Microchannel on the FlowCharacteristics
3.4 Effects of Microchannel Surface Property on FlowBehaviors of Thermo—responsive Microspheres During the Phase Tran sition
3.4.1 Modification of Inner Surface of Glass Microchannel
3.4.2 Characterization of Wettability and Roughness of Modified Glass Microchannels
3.4.3 Effects of Surface Wettability and Roughnessof Microchannel on the Average Velocity of Fluid in Microchannel
3.4.4 Effect of Surface Wettability and Roughness of Microchannel on Aggregation Behaviorsof PNIPAM Microspheres During the Phase Transition
3.4.5Effect of Surface Wettability of Microchannel on Flow Characteristics of PNIPAM Microspheres
3.4.6 Effect of Surface Roughness of Microchannel on Flow Characteristics of PNIPAM Microspheres
3.4.7 Flow Behaviors of PNIPAM Microspheresin Microchannel with Hydrophobicand Rough Surface During the Phase Transition
3.5Summary
References
4Polyphenol—Induced Phase Transition of Thermoresponsive Hydrogels
4.1 Introduction
4.2Phase Transition Behaviors of PNIPAM MicrogelsInduced by Tannic Acid
4.2.1Preparationof MonodispersePNIPAM Microgels
4.2.2 Dynamic Isothermal Volume—Phase Transition of PNIPAM Microgels Induced by TA
4.2.3Equilibrium Isothermal Volume—PhaseTransition of PNIPAM Microgels Induced by TA
4.2.4Thermosensitive Phase Transition of PNIPAMMicrogels in TA Solutions
4.3 Phase Transition Behaviors of PNIPAM MicrogelsInduced by Ethyl Gallate
4.3.1 Preparation of PNIPAM Microspheres and Core—Shell PNIPAM Microcapsules
4.3.2 Thermo—responsive Phase Transition Behaviors of PNIPAM Microspheres in EG Solution
4.3.3The Intact—to—Broken TransformationBehaviors of Core—Shell PNIPAM Microcapsules in Aqueous Solutionwith Varying EG Concentration
4.4 Summary
References
5 Functional Membranes with Thermo—responsive Hydrogel Gates
5.1Introduction
5.2Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Plasma—InducedPore—Filling Graft Polymerizatio
5.2.1Regulation of Response Temperatureof Thermo—responsive Membranes
5.2.2 Effect of Grafting Degree on the Thermo—responsive Gating Characteristics
5.2.3Gating Characteristics of Thermo—responsiveMembranes with Grafted Linearand Cross—linked Hydrogel Gates
5.2.4Membranes with NegativelyThermo—responsive Hydrogel Gates
5.2.5 Composite Thermo—responsive Membrane System
5.2.6Thermo—responsive Affinity Membrane
5.3Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Atom—Transfer Radical Polymerization
5.4Functional Membranes with Thermo—responsive Hydrogel Gates Fabricated by Free—Radical Polymerization
5.5Summary
References
6Functional Microcapsules with Thermo—responsiveHydrogel Shells
6.1 Introduction
6.2 Functional Microcapsules with GraftedThermo—responsive Hydrogel Chains in the Porous Membranes as Gates
6.3 Functional Microcapsules with Thermo—responsiveMicrogels in the Membranes as Gates
6.4Functional Microcapsules with Thermo—responsiveCross—linked Hydrogels as Membranes
6,5Summary
References
……
PartⅡ pH—Responsive Hydrogel Functional Materials
PartⅢThermo—/pH—Dual—Responsive HydrogelFunctional Materials
PartⅣAlcohol—Responsive Hydrogel Functional Materials
PartⅤ Glucose—Responsive Hydrogel Functional Materials
PartⅥ Ion—Recognizable Hydrogel Functional Materials
PartⅦ Molecular—Recogruzable Hydrogel Functional Materials
Index
編輯
Dibetou(巴西),Bibolo(喀麥?。珽mbero、Nivero、(赤道幾內(nèi)亞、利比里亞),Dubini-biri、Mpengwa(加納),Apopo、Sida、Anamenila(尼日利亞),Mnaimei(塞拉利昂),Bombulu、Lifaki-muindu(扎伊爾),Africanwalnut(英國),Tigerwood(美國、英國),Dilolo(法國)