太陽(yáng)能電池是通過(guò)光電效應(yīng)或者光化學(xué)效應(yīng)直接把光能轉(zhuǎn)化成電能的裝置。只要被光照到,瞬間就可輸出電壓及電流。在物理學(xué)上稱為太陽(yáng)能光伏(Photovoltaic,photo 光線,voltaics 電力,縮寫為PV),簡(jiǎn)稱光伏。以光電效應(yīng)工作的薄膜式太陽(yáng)能電池為主流,而以光化學(xué)效應(yīng)工作的濕式太陽(yáng)能電池則還處于萌芽階段。
中文名稱 | 太陽(yáng)能電池 | 外文名稱 | Solar Cell |
---|---|---|---|
發(fā)明時(shí)間 | 1883 | 發(fā)明人 | Charles Fritts |
原理 | 光電效應(yīng) | 材料種類 | 非晶硅、多晶硅、CdTe等 |
類型 | 硅基半導(dǎo)體電池、染料敏化電池等 |
組件線又叫封裝線,封裝是太陽(yáng)能電池生產(chǎn)中的關(guān)鍵步驟,沒(méi)有良好的封裝工藝,多好的電池也生產(chǎn)不出好的組件板。電池的封裝不僅可以使電池的壽命得到保證,而且還增強(qiáng)了電池的抗擊強(qiáng)度。產(chǎn)品的高質(zhì)量和高壽命是贏得可客戶滿意的關(guān)鍵,所以組件板的封裝質(zhì)量非常重要。
1、電池檢測(cè)——2、正面焊接—檢驗(yàn)—3、背面串接—檢驗(yàn)—4、敷設(shè)(玻璃清洗、材料切割、玻璃預(yù)處理、敷設(shè))——5、層壓——6、去毛邊(去邊、清洗)——7、裝邊框(涂膠、裝角鍵、沖孔、裝框、擦洗余膠)——8、焊接接線盒——9、高壓測(cè)試——10、組件測(cè)試—外觀檢驗(yàn)—11、包裝入庫(kù)
1、高轉(zhuǎn)換效率、高質(zhì)量的電池片;
2、高質(zhì)量的原材料,例如:高的交聯(lián)度的EVA、高粘結(jié)強(qiáng)度的封裝劑(中性硅酮樹脂膠)、高透光率高強(qiáng)度的鋼化玻璃等;
3、合理的封裝工藝
4、員工嚴(yán)謹(jǐn)?shù)墓ぷ髯黠L(fēng);
由于太陽(yáng)電池屬于高科技產(chǎn)品,生產(chǎn)過(guò)程中一些細(xì)節(jié)問(wèn)題,一些不起眼問(wèn)題如應(yīng)該戴手套而不戴、應(yīng)該均勻的涂刷試劑而潦草完事等都是影響產(chǎn)品質(zhì)量的大敵,所以除了制定合理的制作工藝外,員工的認(rèn)真和嚴(yán)謹(jǐn)是非常重要的。
目前市場(chǎng)上大量產(chǎn)的單晶與多晶硅的太陽(yáng)電池平均效率約在15%上下,也就是說(shuō),這樣的太陽(yáng)電池只能將入射太陽(yáng)光能轉(zhuǎn)換成15%可用電能,其余的85%都浪費(fèi)成無(wú)用的熱能。所以嚴(yán)格地說(shuō),現(xiàn)今太陽(yáng)電池,也是某種型式的“浪費(fèi)能源”。當(dāng)然理論上,只要能有效的抑制太陽(yáng)電池內(nèi)載子和聲子的能量交換,換言之,有效的抑制載子能帶內(nèi)或能帶間的能量釋放,就能有效的避免太陽(yáng)電池內(nèi)無(wú)用的熱能的產(chǎn)生,大幅地提高太陽(yáng)電池的效率,甚至達(dá)到超高效率的運(yùn)作。而這樣簡(jiǎn)易的理論構(gòu)想,在實(shí)際的技術(shù)上,卻可以用不同的方法來(lái)執(zhí)行這樣的原則。超高效率的太陽(yáng)電池(第三代太陽(yáng)電池)的技術(shù)發(fā)展,除了運(yùn)用新穎的元件結(jié)構(gòu)設(shè)計(jì),來(lái)嘗試突破其物理限制外,也有可能因?yàn)樾虏牧系囊M(jìn),而達(dá)成大幅增加轉(zhuǎn)換效率的目的。
薄膜太陽(yáng)電池 包括非晶硅太陽(yáng)電池,CdTe 和 CIGS(copper indium gallium selenide)電池。雖然目前多數(shù)量產(chǎn)薄膜太陽(yáng)電池轉(zhuǎn)換效率仍無(wú)法與晶硅太陽(yáng)電池抗衡,但是其低制造成本仍然使其在市場(chǎng)有一席之地,且未來(lái)市場(chǎng)占有率仍會(huì)持續(xù)成長(zhǎng)。
染料感光太陽(yáng)電池(Dye-sensitized solar cell,DSSC)是最近被開發(fā)出來(lái)的一種嶄新的太陽(yáng)電池。DSsC也被稱為Grätzel cell,因?yàn)槭窃?991年由Grätzel等人發(fā)表的構(gòu)造和一般光伏特電池不同,其基板通常是玻璃,也可以是透明且可彎曲的聚合箔(polymer foil),玻璃上有一層透明導(dǎo)電的氧化物(transparent conducting oxide,TCO)通常是使用FTO(SnO2:F),然后長(zhǎng)有一層約10微米厚的porous納米尺寸的 TiO2粒子(約10~20 nm)形成一nano-porous薄膜。然后涂上一層染料附著于TiO2的粒子上。通常染料是采用ruthenium polypyridyl complex。上層的電極除了也是使用玻璃和TCO外,也鍍上一層鉑當(dāng)電解質(zhì)反應(yīng)的催化劑,二層電極間,則注入填滿含有iodide/triiodide電解質(zhì)。雖然目前DSC電池的最高轉(zhuǎn)換效率約在12%左右(理論最高29﹪),但是制造過(guò)程簡(jiǎn)單,所以一般認(rèn)將大幅降低生產(chǎn)成本,也同時(shí)降低每度電的電費(fèi)。
串疊型電池(Tandem Cell)屬于一種運(yùn)用新穎原件結(jié)構(gòu)的電池,借由設(shè)計(jì)多層不同能隙的太陽(yáng)能電池來(lái)達(dá)到吸收效率最佳化的結(jié)構(gòu)設(shè)計(jì)。目前由理論計(jì)算可知,如果在結(jié)構(gòu)中放入越多層數(shù)的電池,將可把電池效率逐步提升,甚至可達(dá)到50%的轉(zhuǎn)換效率。
光纖太陽(yáng)能電池(Fiber-based solar cell 或者Fiber cell)由美國(guó)Wake Forest University納米與分子研究中心首先提出,并在美國(guó)《Applied Physics Letters》(doi:10.1063/1.3263947)和《Physical Review B》(DOI: 10.1103/PhysRevB.84.085206,2011)上報(bào)道了這種電池的最新成果。目前,它利用特有的光纖結(jié)構(gòu),并結(jié)合有機(jī)吸收層,達(dá)到了超出平面電池的吸收效率,并已被證明能夠很好的應(yīng)用到超光強(qiáng)的聚光型電站中。
據(jù)美國(guó)物理學(xué)家組織網(wǎng)近日?qǐng)?bào)道,美國(guó)能源部布魯克海文國(guó)家實(shí)驗(yàn)室和洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室的科學(xué)家們研發(fā)出了一種可吸收光線并將其大面積轉(zhuǎn)化成為電能的新型透明薄膜。這種薄膜以半導(dǎo)體和富勒烯為原料,具有微蜂窩結(jié)構(gòu)。相關(guān)研究發(fā)表在最新一期的《材料化學(xué)》雜志上,論文稱該技術(shù)可被用于開發(fā)透明的太陽(yáng)能電池板,甚至還可以用這種材料制成可以發(fā)電的窗戶?!∵@種材料由摻雜碳富勒烯的半導(dǎo)體聚合物組成。在嚴(yán)格控制的條件下,該材料可通過(guò)自組裝方式由一個(gè)微米尺度的六邊形結(jié)構(gòu)展開為一個(gè)數(shù)毫米大小布滿微蜂窩結(jié)構(gòu)的平面。
負(fù)責(zé)該研究的美國(guó)布魯克海文國(guó)家實(shí)驗(yàn)室多功能納米材料中心的物理化學(xué)家米爾恰·卡特萊特說(shuō),雖然這種蜂窩狀薄膜的制作采用了與傳統(tǒng)高分子材料(如聚苯乙烯)類似的工藝,但以半導(dǎo)體和富勒烯為原料,并使其能夠吸收光線產(chǎn)生電荷這還是第一次。
據(jù)介紹,該材料之所以還能在外觀上保持透明是因?yàn)榫酆衔镦溨慌c六邊形的邊緣緊密相連,而其余部分的結(jié)構(gòu)則較為簡(jiǎn)單,以連接點(diǎn)為中心向外越來(lái)越薄。這種結(jié)構(gòu)具有連接作用,同時(shí)具有較強(qiáng)的吸收光線的能力,也有利于傳導(dǎo)電流,而其他部分相對(duì)較薄也更為透明,主要起透光的作用。
研究人員通過(guò)一種十分獨(dú)特的方式來(lái)編織這種蜂窩狀薄膜:首先在包含聚合物以及富勒烯在內(nèi)的溶液中加入一層極薄的微米尺度的小水滴。這些水滴在接觸到聚合物溶液后就會(huì)自組裝成大型陣列,而當(dāng)溶劑完全蒸發(fā)后,就會(huì)形成一塊大面積的六邊形蜂窩狀平面。此外,研究人員發(fā)現(xiàn)聚合物的形成與溶劑的蒸發(fā)速度緊密相關(guān),這相應(yīng)地又會(huì)決定最終材料的電荷傳輸速度。溶劑蒸發(fā)得越慢,聚合物的結(jié)構(gòu)就越緊湊,電荷傳輸速度也就越快。
“這是一種成本低廉而效益顯著的制備方法,很有潛力從實(shí)驗(yàn)室應(yīng)用到大規(guī)模商業(yè)化生產(chǎn)之中?!笨ㄌ厝R特說(shuō)。
通過(guò)掃描探針式電子顯微鏡和熒光共焦掃描顯微鏡,研究人員證實(shí)了新材料蜂窩結(jié)構(gòu)的均勻性,并對(duì)其不同部位(邊緣、中心、節(jié)點(diǎn))的光學(xué)性質(zhì)和電荷產(chǎn)生情況進(jìn)行了測(cè)試。
卡特萊特表示:“我們的工作讓人們對(duì)蜂窩結(jié)構(gòu)的光學(xué)特征有了更深的了解。下一步我們計(jì)劃將這種材料應(yīng)用于透明且可卷曲的柔性太陽(yáng)能電池以及其他設(shè)備的制造當(dāng)中,以推動(dòng)這種蜂窩薄膜盡快進(jìn)入實(shí)用階段?!?? ?
太陽(yáng)能電池主要分類
太陽(yáng)能電池按結(jié)晶狀態(tài)可分為結(jié)晶系薄膜式和非結(jié)晶系薄膜式(以下表示為a-)兩大類,而前者又分為單結(jié)晶形和多結(jié)晶形。
按材料可分為硅薄膜形、化合物半導(dǎo)體薄膜形和有機(jī)膜形,而化合物半導(dǎo)體薄膜形又分為非結(jié)晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化鋅 (Zn 3 p 2 )等。
太陽(yáng)能電池根據(jù)所用材料的不同,太陽(yáng)能電池還可分為:硅太陽(yáng)能電池、多元化合物薄膜太陽(yáng)能電池、聚合物多層修飾電極型太陽(yáng)能電池、納米晶太陽(yáng)能電池、有機(jī)太陽(yáng)能電池、塑料太陽(yáng)能電池,其中硅太陽(yáng)能電池是目前發(fā)展最成熟的,在應(yīng)用中居主導(dǎo)地位。
硅太陽(yáng)能電池分為單晶硅太陽(yáng)能電池、多晶硅薄膜太陽(yáng)能電池和非晶硅薄膜太陽(yáng)能電池三種。
單晶硅太陽(yáng)能電池轉(zhuǎn)換效率最高,技術(shù)也最為成熟。在實(shí)驗(yàn)室里最高的轉(zhuǎn)換效率為24.7%,規(guī)模生產(chǎn)時(shí)的效率為15%(截止2011,為18%)。在大規(guī)模應(yīng)用和工業(yè)生產(chǎn)中仍占據(jù)主導(dǎo)地位,但由于單晶硅成本價(jià)格高,大幅度降低其成本很困難,為了節(jié)省硅材料,發(fā)展了多晶硅薄膜和非晶硅薄膜做為單晶硅太陽(yáng)能電池的替代產(chǎn)品。
多晶硅薄膜太陽(yáng)能電池與單晶硅比較,成本低廉,而效率高于非晶硅薄膜電池,其實(shí)驗(yàn)室最高轉(zhuǎn)換效率為18%,工業(yè)規(guī)模生產(chǎn)的轉(zhuǎn)換效率為10%(截止2011,為17%)。因此,多晶硅薄膜電池不久將會(huì) 在太陽(yáng)能電池市場(chǎng)上占據(jù)主導(dǎo)地位。
非晶硅薄膜太陽(yáng)能電池成本低重量輕,轉(zhuǎn)換效率較高,便于大規(guī)模生產(chǎn),有極大的潛力。但受制于其材料引發(fā)的光電效率衰退效應(yīng),穩(wěn)定性不高,直接影響了它的實(shí)際應(yīng)用。如果能進(jìn)一步解決穩(wěn)定性問(wèn)題及提高轉(zhuǎn)換率問(wèn)題,那么,非晶硅太陽(yáng)能電池?zé)o疑是太陽(yáng)能電池的主要發(fā)展產(chǎn)品之一。
多晶體薄膜電池硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽(yáng)能電池效率高,成本較單晶硅電池低,并且也易于大規(guī)模生產(chǎn),但由于鎘有劇毒,會(huì)對(duì)環(huán)境造成嚴(yán)重的污染,因此,并不是晶體硅太陽(yáng)能電池最理想的替代產(chǎn)品。
砷化鎵(GaAs)III-V化合物電池的轉(zhuǎn)換效率可達(dá)28%,GaAs化合物材料具有十分理想的光學(xué)帶隙以及較高的吸收效率,抗輻照能力強(qiáng),對(duì)熱不敏感,適合于制造高效單結(jié)電池。但是GaAs材料的價(jià)格不菲,因而在很大程度上限制了用GaAs電池的普及。
銅銦硒薄膜電池(簡(jiǎn)稱CIS)適合光電轉(zhuǎn)換,不存在光致衰退問(wèn)題,轉(zhuǎn)換效率和多晶硅一樣。具有價(jià)格低廉、性能良好和工藝簡(jiǎn)單等優(yōu)點(diǎn),將成為今后發(fā)展太陽(yáng)能電池的一個(gè)重要方向。唯一的問(wèn)題是材料的來(lái)源,由于銦和硒都是比較稀有的元素,因此,這類電池的發(fā)展又必然受到限制。
以有機(jī)聚合物代替無(wú)機(jī)材料是剛剛開始的一個(gè)太陽(yáng)能電池制造的研究方向。由于有機(jī)材料柔性好,制作容易,材料來(lái)源廣泛,成本低等優(yōu)勢(shì),從而對(duì)大規(guī)模利用太陽(yáng)能,提供廉價(jià)電能具有重要意義。但以有機(jī)材料制備太陽(yáng)能電池的研究?jī)H僅剛開始,不論是使用壽命,還是電池效率都不能和無(wú)機(jī)材料特別是硅電池相比。能否發(fā)展成為具有實(shí)用意義的產(chǎn)品,還有待于進(jìn)一步研究探索。
納米TiO2晶體化學(xué)能太陽(yáng)能電池是新近發(fā)展的,優(yōu)點(diǎn)在于它廉價(jià)的成本和簡(jiǎn)單的工藝及穩(wěn)定的性能。其光電效率穩(wěn)定在10%以上,制作成本僅為硅太陽(yáng)電池的1/5~1/10.壽命能達(dá)到20年以上。
此類電池的研究和開發(fā)剛剛起步,不久的將來(lái)會(huì)逐步走上市場(chǎng)。
有機(jī)薄膜太陽(yáng)能電池,就是由有機(jī)材料構(gòu)成核心部分的太陽(yáng)能電池。大家對(duì)有機(jī)太陽(yáng)能電池不熟悉,這是情理中的事。如今量產(chǎn)的太陽(yáng)能電池里,95%以上是硅基的,而剩下的不到5%也是由其它無(wú)機(jī)材料制成的。
染料敏化太陽(yáng)能電池,是將一種色素附著在TiO2粒子上,然后浸泡在一種電解液中。色素受到光的照射,生成自由電子和空穴。自由電子被TiO2吸收,從電極流出進(jìn)入外電路,再經(jīng)過(guò)用電器,流入電解液,最后回到色素。染料敏化太陽(yáng)能電池的制造成本很低,這使它具有很強(qiáng)的競(jìng)爭(zhēng)力。它的能量轉(zhuǎn)換效率為12%左右。
塑料太陽(yáng)能電池以可循環(huán)使用的塑料薄膜為原料,能通過(guò)“卷對(duì)卷印刷”技術(shù)大規(guī)模生產(chǎn),其成本低廉、環(huán)保。但目前塑料太陽(yáng)能電池尚不成熟,預(yù)計(jì)在未來(lái)5年到10年,基于塑料等有機(jī)材料的太陽(yáng)能電池制造技術(shù)將走向成熟并大規(guī)模投入使用。
在進(jìn)行太陽(yáng)能電池組件的設(shè)計(jì)計(jì)算時(shí),對(duì)于全年負(fù)載不變的情況,太陽(yáng)能電池組件的設(shè)計(jì)計(jì)算是基于輻照最低的月份。如果負(fù)載的工作情況是變化的,即每個(gè)月份的負(fù)載對(duì)電力的需求是不一樣的,那么在設(shè)計(jì)時(shí)采取的最好方法就...
太陽(yáng)能電池片和太陽(yáng)能電池板的區(qū)別?
光伏組件是由光伏電池片組裝拼接而成,電池片是基本組成單元。最終是用光伏組件安裝在屋頂上進(jìn)行發(fā)電,所以他們是從屬關(guān)系。
1、更低的成本 目前,主流的光伏組件產(chǎn)品仍以硅為主要原材料,僅以硅原材料的的消耗計(jì)算,生產(chǎn)1兆瓦晶體硅太陽(yáng)電池,需要10-12噸高純硅,但是如果消耗同樣的硅材料用以生產(chǎn)薄膜非晶硅太陽(yáng)電池可以產(chǎn)出超過(guò)2...
太陽(yáng)能電池組裝工藝
在這里只簡(jiǎn)單的介紹一下工藝的作用,給大家一個(gè)感性的認(rèn)識(shí).
由于電池片制作條件的隨機(jī)性,生產(chǎn)出來(lái)的電池性能不盡相同,所以為了有效的將性能一致或相近的電池組合在一起,所以應(yīng)根據(jù)其性能參數(shù)進(jìn)行分類;電池測(cè)試即通過(guò)測(cè)試電池的輸出參數(shù)(電流和電壓)的大小對(duì)其進(jìn)行分類。以提高電池的利用率,做出質(zhì)量合格的電池組件。
是將匯流帶焊接到電池正面(負(fù)極)的主柵線上,匯流帶為鍍錫的銅帶,我們使用的焊接機(jī)可以將焊帶以多點(diǎn)的形式點(diǎn)焊在主柵線上。焊接用的熱源為一個(gè)紅外燈(利用紅外線的熱效應(yīng))。焊帶的長(zhǎng)度約為電池邊長(zhǎng)的2倍。多出的焊帶在背面焊接時(shí)與后面的電池片的背面電極相連
背面焊接是將36片電池串接在一起形成一個(gè)組件串,我們目前采用的工藝是手動(dòng)的,電池的定位主要靠一個(gè)膜具板,上面有36個(gè)放置電池片的凹槽,槽的大小和電池的大小相對(duì)應(yīng),槽的位置已經(jīng)設(shè)計(jì)好,不同規(guī)格的組件使用不同的模板,操作者使用電烙鐵和焊錫絲將“前面電池”的正面電極(負(fù)極)焊接到“后面電池”的背面電極(正極)上,這樣依次將36片串接在一起并在組件串 的正負(fù)極焊接出引線。
背面串接好且經(jīng)過(guò)檢驗(yàn)合格后,將組件串、玻璃和切割好的EVA 、玻璃纖維、背板按照一定的層次敷設(shè)好,準(zhǔn)備層壓。玻璃事先涂一層試劑(primer)以增加玻璃和EVA的粘接強(qiáng)度。敷設(shè)時(shí)保證電池串與玻璃等材料的相對(duì)位置,調(diào)整好電池間的距離,為層壓打好基礎(chǔ)。(敷設(shè)層次:由下向上:鋼化玻璃、EVA、電池片、EVA、玻璃纖維、背板)。
將敷設(shè)好的電池放入層壓機(jī)內(nèi),通過(guò)抽真空將組件內(nèi)的空氣抽出,然后加熱使EVA熔化將電池、玻璃和背板粘接在一起;最后冷卻取出組件。層壓工藝是組件生產(chǎn)的關(guān)鍵一步,層壓溫度層壓時(shí)間根據(jù)EVA的性質(zhì)決定。我們使用快速固化EVA時(shí),層壓循環(huán)時(shí)間約為25分鐘。固化溫度為150℃。
層壓時(shí)EVA熔化后由于壓力而向外延伸固化形成毛邊,所以層壓完畢應(yīng)將其切除。
類似與給玻璃裝一個(gè)鏡框;給玻璃組件裝鋁框,增加組件的強(qiáng)度,進(jìn)一步的密封電池組件,延長(zhǎng)電池的使用壽命。邊框和玻璃組件的縫隙用硅酮樹脂填充。各邊框間用角鍵連接。
在組件背面引線處焊接一個(gè)盒子,以利于電池與其他設(shè)備或電池間的連接。
高壓測(cè)試是指在組件邊框和電極引線間施加一定的電壓,測(cè)試組件的耐壓性和絕緣強(qiáng)度,以保證組件在惡劣的自然條件(雷擊等)下不被損壞。
測(cè)試的目的是對(duì)電池的輸出功率進(jìn)行標(biāo)定,測(cè)試其輸出特性,確定組件的質(zhì)量等級(jí)。目前主要就是模擬太陽(yáng)光的測(cè)試Standard test condition(STC),一般一塊電池板所需的測(cè)試時(shí)間在7-8秒左右。
1.計(jì)算負(fù)載24h消耗容量P
P=H/V
V——負(fù)載額定電源
2.選定每天日照時(shí)數(shù)T(H)。
3.計(jì)算太陽(yáng)能陣列工作電流。
IP=P(1+Q)/T
Q——按陰雨期富余系數(shù),Q=0.21~1.00
4.確定蓄電池浮充電壓VF。
鎘鎳(GN)和鉛酸(CS)蓄電池的單體浮充電壓分別為1.4~1.6V和2.2V。
5.太陽(yáng)能電池溫度補(bǔ)償電壓VT。
VT=2.1/430(T-25)VF
6.計(jì)算太陽(yáng)能電池陣列工作電壓VP。
VP=VF+VD+VT
其中VD=0.5~0.7
約等于VF
7.太陽(yáng)電池陣列輸出功率WP?平板式太陽(yáng)能電板。
WP=IP×UP
8.根據(jù)VP、WP在硅電池平板組合系列表格,確定標(biāo)準(zhǔn)規(guī)格的串聯(lián)塊數(shù)和并聯(lián)組數(shù)。
格式:pdf
大?。?span id="ho1yo8n" class="single-tag-height">3.6MB
頁(yè)數(shù): 21頁(yè)
評(píng)分: 4.7
太陽(yáng)能電池簡(jiǎn)介
格式:pdf
大小:3.6MB
頁(yè)數(shù): 未知
評(píng)分: 4.3
<正> Y2002-63082-13 0210387太陽(yáng)能電池的Cd自由緩沖層=Cd free buffer layers forsolar cells〔會(huì),英〕/Bernede,J.C.& Zoaeter,M.//2000 Mediterranean Conference for Environment and So-lar(COMPLES’ZK).-13~16(PE)
HIT,即采用HIT結(jié)構(gòu)的硅太陽(yáng)能電池,開路電壓729mV。
電池結(jié)構(gòu)
HIT(Heterojunction with intrinsic Thinlayer)
采用HIT結(jié)構(gòu)的硅太陽(yáng)能電池,所謂HIT結(jié)構(gòu)就是在晶體硅片上沉積一層非摻雜(本征)氫化非晶硅薄膜和一層與晶體硅摻雜種類相反的摻雜氫化非晶硅薄膜,采取該工藝措施后,改善了PN結(jié)的性能。因而使轉(zhuǎn)換效率達(dá)到23%,開路電壓達(dá)到729mV,并且全部工藝可以在200℃以下實(shí)現(xiàn)。
多元化合物太陽(yáng)能電池指不是用單一元素半導(dǎo)體材料制成的太陽(yáng)能電池?,F(xiàn)在各國(guó)研究的多元化合物太陽(yáng)能電池品種繁多,但絕大多數(shù)尚未工業(yè)化生產(chǎn)。半導(dǎo)體化合物GaAs,CdTe,Cu(In, Ga)Se2(CIGS)的禁帶寬度接近于光伏電池所要求的最佳禁帶寬度,它們具有高的光電轉(zhuǎn)化效率,又有較低的制作成本,可以用來(lái)制造薄膜疊層太陽(yáng)能電池。
GaAs 是III-V 族半導(dǎo)體材料,禁帶寬度1.42 eV,與太陽(yáng)光譜匹配,是理想的太陽(yáng)能電池材料。單結(jié)GaAs 電池只能吸收特定光譜的太陽(yáng)光,轉(zhuǎn)換效率不高。不同禁帶寬度的III-V
族材料制備的多結(jié)GaAs 電池,按禁帶寬度由大到小疊合,這些III-V 族材料分別吸收和轉(zhuǎn)換太陽(yáng)光譜的不同子域, 可大幅提高太陽(yáng)能電池的光電轉(zhuǎn)換效率。由于鎵比較稀缺,砷有毒,制造成本高,此類太陽(yáng)能電池的發(fā)展受到一定的影響。目前, 國(guó)際上已對(duì)AlGaAs/GaAs,GaInP2 /GaAs,GaInAs/Inp,GaInP/GaInAs 等雙結(jié)疊層太陽(yáng)能電池進(jìn)行過(guò)研究, 其中對(duì)GaInP2 /GaAs 疊層太陽(yáng)能電池的研究居多。
這種電池結(jié)構(gòu)首先由Olson 在1990 年提出,他發(fā)現(xiàn)GaInP2材料可以作為疊層太陽(yáng)能電池的頂層電池。目前國(guó)外報(bào)道的GaInP2 /GaAs 雙結(jié)疊層太陽(yáng)電池的光轉(zhuǎn)換效率已達(dá)25.7%。產(chǎn)業(yè)化成熟產(chǎn)品轉(zhuǎn)換效率約23.1%, 并逐步用作衛(wèi)星等航天器的供電電源,前景十分廣闊。不過(guò),造價(jià)昂貴一直是GaInP2 /GaAs 疊層電池難以大批量生產(chǎn)的直接原因, 選用價(jià)格低廉的Ge 襯底是降低成本, 減小GaInP2 /GaAs 疊層太陽(yáng)能電池自身重量的有效途徑。國(guó)外對(duì)此已研究多年,近年國(guó)內(nèi)研究也開始深入。上海交通大學(xué)物理系的陳鳴波、崔容強(qiáng)等采用低壓金屬有機(jī)物化學(xué)氣相沉積工藝制備P-N 型的GaInP2 /GaAs 疊層太陽(yáng)能電池樣品,并對(duì)GaInP2頂層電池進(jìn)行改進(jìn),制得的電池光電轉(zhuǎn)換效率為23.82%。其他雙結(jié)太陽(yáng)能電池如Al0.37Ga0.63As/GaAs(Ge)兩者的禁帶寬度分別為1.93 eV 和1.42 eV,正處于疊層太陽(yáng)能電池所需的最佳匹配范圍,其效率達(dá)到23%。
在雙結(jié)電池的基礎(chǔ)上,1993 年在國(guó)外就有報(bào)道研制出三結(jié)Ga0.5In0.5P/GaAs/Ge 疊層太陽(yáng)能電池。1996 年,美國(guó)光譜實(shí)驗(yàn)室研制的該類電池的最高效率達(dá)到25.7%, 小批量生產(chǎn)平均效率達(dá)到23.8%,1997 年大批量生產(chǎn)平均效率達(dá)到24.5%。2000 年最高效率達(dá)到29%,2002 年大批量生產(chǎn)平均效率達(dá)到26.5%。目前,國(guó)際上從事多結(jié)電池批產(chǎn)的最知名的兩家公司是美國(guó)的光譜實(shí)驗(yàn)室和Emcore 公司, 其年批產(chǎn)能力分別為500 kW 和200 kW。
作為II-VI 族化合物半導(dǎo)體CdTe,是禁帶寬度為1.46 eV的直接禁帶半導(dǎo)體,很接近太陽(yáng)能電池需要的最優(yōu)化禁帶寬度,吸收系數(shù)約為105 cm-1,就太陽(yáng)輻射光譜中能量高于CdTe禁帶寬度的范圍而言,1μm 厚的CdTe 可以有效吸收其99%[10-11]。目前,國(guó)內(nèi)的CdS/CdTe 太陽(yáng)電池是研究熱點(diǎn),報(bào)道的最高光電轉(zhuǎn)換率是由李愿杰等[12]制造的單層CdS/CdTe,效率為13.38%。該實(shí)驗(yàn)室還制造出多層疊層CdS/CdTe 太陽(yáng)能電池,結(jié)構(gòu)為CdS/CdTe/CdS/CdTe/ZnTe:Cu/Ni。這種疊層太陽(yáng)能電池的效率可以達(dá)到8.16%。
Cu(In, Ga)Se2(CIGS)太陽(yáng)能電池的光電轉(zhuǎn)化效率高、性能穩(wěn)定、抗輻射能力強(qiáng),且制造成本低,倍受重視,是新一代太陽(yáng)能電池。它的最高的轉(zhuǎn)換效率已經(jīng)達(dá)到19.5%。為了提高效率,可以制成CGS/CIS 層疊太陽(yáng)能電池,這種電池的轉(zhuǎn)換效率據(jù)報(bào)道已經(jīng)達(dá)到33.9%,該疊層電池的穩(wěn)定性、直接帶寬、高吸收系數(shù)對(duì)于生產(chǎn)低成本、高效率的兩結(jié)疊層太陽(yáng)能電池來(lái)說(shuō)是可取的。對(duì)于兩結(jié)疊層太陽(yáng)能電池,其頂層電池對(duì)全部轉(zhuǎn)換效率的貢獻(xiàn)大,所以要達(dá)到CGS/CIS 25%的轉(zhuǎn)換效率,需要轉(zhuǎn)換效率大于15%高質(zhì)量的CGS 頂層電池。
設(shè)計(jì)太陽(yáng)能電池方陣需要當(dāng)?shù)氐臍庀筚Y料,尤其是當(dāng)?shù)刈罱?0~20年太陽(yáng)能年平均輻射量。最好能夠獲得逐月的太陽(yáng)能總輻射量。太陽(yáng)能電池方陣的安裝方式往往是垂直于太陽(yáng)光的,有換算的問(wèn)題。
針對(duì)冬季太陽(yáng)能輻射量較少的特點(diǎn),固定太陽(yáng)能電池方陣的最佳傾角是其所在地緯度加5一10度。但如果某地夏季雨量較多,太陽(yáng)輻射量最小月出現(xiàn)在夏季,則固定太陽(yáng)能電池方陣的最佳傾角是緯度減5一or度。對(duì)于季節(jié)性負(fù)載,應(yīng)考慮使負(fù)載用電期間的方陣輻射量為最大值時(shí)的傾角為最佳。如太陽(yáng)能水泵灌溉系統(tǒng),就應(yīng)該考慮夏季為最大用電量,方陣傾角應(yīng)小于當(dāng)?shù)氐木暥?。為了能夠充分利用太?yáng)能資源,最好能將方陣支架設(shè)計(jì)為傾角可以調(diào)節(jié)的方式。
根據(jù)蓄電池組 的電壓決定太陽(yáng)能電池組串聯(lián)的數(shù)量,如果太陽(yáng)能電池組串聯(lián)數(shù)量太少,太陽(yáng)能電池方陣輸出電壓太低,不能滿足蓄電池組正常充電的需要,太陽(yáng)能電池組只有輸出電壓而沒(méi)有輸出電流。增加太陽(yáng)能電池組的串聯(lián)數(shù)使方陣I一V曲線的最佳工作點(diǎn)與蓄電池組的浮充電壓相近,這時(shí)方陣能夠得到最大的功率輸出,隨著蓄電池組容量的逐漸充滿,端電壓也逐漸升高,充電電流趨向減小,這不是最理想的運(yùn)行方式,考慮太陽(yáng)能電池組輸出電壓隨著溫度的升高具有負(fù)特性,通常設(shè)計(jì)組件串聯(lián)數(shù)時(shí)留有一定的余量。溫度每升高1℃時(shí)硅太陽(yáng)能電池的開路電壓將下降.04%,填充因子也將隨著溫度的升高而減小,輸出功率也將減少.04%一.05%。除此以外還要考慮防反充二極管和連接導(dǎo)線的電壓降。
方陣并聯(lián)數(shù)主要取決于負(fù)載每天的總耗電量、當(dāng)?shù)啬昶骄逯等照諘r(shí)數(shù)、蓄電池組充電效率、方陣表面塵污遮蔽或組件老化引起的修正系數(shù)和方陣組合損失等因素。所計(jì)算的方陣最佳電流為總的蓄電池充電電流,除以每個(gè)串聯(lián)子方陣的最佳工作電流就是方陣的并聯(lián)數(shù)??紤]每年中最小月的太陽(yáng)能總輻射量低于年平均太陽(yáng)輻射量,因此通常采用進(jìn)位法取整數(shù)值。將串聯(lián)數(shù)、并聯(lián)數(shù)和每個(gè)組件功率相乘,即為太陽(yáng)能方陣總功率。
方陣的間距主要考慮冬季時(shí)太陽(yáng)高度較低,后排方陣容易被前排遮擋,影響其輸出功率,所以,只要保證冬季不被遮擋,其他時(shí)間就不存在問(wèn)題。即將實(shí)施的獨(dú)立光伏系統(tǒng)技術(shù)規(guī)范規(guī)定,為了確保在日出后或日落前3小時(shí)在冬至日后排方陣不被前排方陣遮擋,即保證全年每天中當(dāng)?shù)貢r(shí)間的上午9時(shí)至下午3時(shí)之間光伏組件無(wú)陰影遮擋。以某地緯度35“為例,前后排距離應(yīng)該是前排高度的1.8倍。這是一年中冬至日的極端情況,實(shí)際應(yīng)用時(shí)考慮方陣場(chǎng)地的限制及光伏電站的投資成本可適當(dāng)放松。
我國(guó)地處北半球,組件方陣的采光面應(yīng)朝南放置,并與太陽(yáng)光線垂直。在施工時(shí)最好使用指南針進(jìn)行定位,確保其準(zhǔn)確性。太陽(yáng)能電池組件在安裝時(shí)要輕拿輕放,嚴(yán)禁碰撞、敲擊,尤其背面的TpT防止劃傷和劃破,以免影響其性能,縮短其壽命。太陽(yáng)能電池方陣表面應(yīng)經(jīng)常保持清潔,如有灰塵或其他污物應(yīng)用清水沖洗,尤其是鳥糞。沙塵暴和雪后應(yīng)及時(shí)清掃。方陣支架應(yīng)可靠接地,光伏發(fā)電系統(tǒng)如果安裝在高山上或開闊地帶,應(yīng)安裝避雷針以防雷擊。并分別測(cè)量其接地電阻是否符合規(guī)定要求。太陽(yáng)能電池串聯(lián)后開路電壓超過(guò)11ov時(shí),在安裝時(shí)最好做好絕緣措施,防止發(fā)生觸電事故。