它是Intel開發(fā)的一種連接北橋和ICH(南橋)的高速并行總線,可在1個時鐘周期內傳輸4次數(shù)據(jù)。
它是Intel開發(fā)的一種連接北橋和ICH(南橋)的高速并行總線,可在1個時鐘周期內傳輸4次數(shù)據(jù)。該技術最早應用于i820芯片組,并先后推出了1.0、1.1、1.5和2.0等多個版本。1.0版本的Hub-Link總線工作頻率為66MHz,并可提供266MB/s的帶寬。而2.0版本的總線位寬由8bit擴展到16bit,相應地,數(shù)據(jù)帶寬也提高到1.06GB/s。
集線器(HUB)是計算機網(wǎng)絡中連接多個計算機或其他設備的連接設備,是對網(wǎng)絡進行集中管理的最小單元。英文Hub就是中心的意思,像樹的主干一樣,它是各分支的匯集點。HUB是一個共享設備,主要提供信號放大和...
usb集線器又叫USB Hub,一種可以將一個USB接口擴展為多個(通常為4個),并可以使這些接口同時使用的裝置。把其中一頭插到電腦機箱或者其它正在供電的設備上,U盤、USB數(shù)據(jù)線等再插到集線器上就行...
HUB是一個多端口的轉發(fā)器,當以HUB為中心設備時,網(wǎng)絡中某條線路產(chǎn)生了故障,并不影響其它線路的工作。所以HUB在局域網(wǎng)中得到了廣泛的應用。大多數(shù)的時候它用在星型與樹型網(wǎng)絡拓撲結構中,以RJ45接口與...
格式:pdf
大?。?span id="oofy1iw" class="single-tag-height">198KB
頁數(shù): 3頁
評分: 4.3
本文介紹了CC-Link的遠程站系統(tǒng)的一種新的實現(xiàn),利用ARM微控制器和CC-Link總線技術來設計一種新型的CC-Link的遠程站,從而實現(xiàn)工位設備的遠程控制。本文給出了的工位控制器的硬件設計電路,論述了硬件接口之間的數(shù)據(jù)通信實現(xiàn)技術,給出了電機控制的原理和流程。
系統(tǒng)總線常用總線
----ISA(industrial standard architecture)總線標準是IBM 公司1984年為推出PC/AT機而建立的系統(tǒng)總線標準,所以也叫AT總線。它是對XT總線的擴展,以適應8/16位數(shù)據(jù)總線要求。它在80286至80486時代應用非常廣泛,以至于奔騰機中還保留有ISA總線插槽。ISA總線有98只引腳。
----EISA總線是1988年由Compaq等9家公司聯(lián)合推出的總線標準。它是在ISA總線的基礎上使用雙層插座,在原來ISA總線的98條信號線上又增加了98條信號線,也就是在兩條ISA信號線之間添加一條EISA信號線。在實用中,EISA總線完全兼容ISA總線信號。
----VESA( video electronics standard association)總線是 1992年由60家附件卡制造商聯(lián)合推出的一種局部總線,簡稱為VL(VESA local bus)總線。它的推出為微機系統(tǒng)總線體系結構的革新奠定了基礎。該總線系統(tǒng)考慮到CPU與主存和Cache 的直接相連,通常把這部分總線稱為CPU總線或主總線,其他設備通過VL總線與CPU總線相連,所以VL總線被稱為局部總線。它定義了32位數(shù)據(jù)線,且可通過擴展槽擴展到64 位,使用33MHz時鐘頻率,最大傳輸率達132MB/s,可與CPU同步工作。是一種高速、高效的局部總線,可支持386SX、386DX、486SX、486DX及奔騰微處理器。
----PCI(peripheral component interconnect)總線是當前最流行的總線之一,它是由Intel公司推出的一種局部總線。它定義了32位數(shù)據(jù)總線,且可擴展為64位。PCI總線主板插槽的體積比原ISA總線插槽還小,其功能比VESA、ISA有極大的改善,支持突發(fā)讀寫操作,最大傳輸速率可達132MB/s,可同時支持多組外圍設備。 PCI局部總線不能兼容現(xiàn)有的ISA、EISA、MCA(micro channel architecture)總線,但它不受制于處理器,是基于奔騰等新一代微處理器而發(fā)展的總線。
----以上所列舉的幾種系統(tǒng)總線一般都用于商用PC機中,在計算機系統(tǒng)總線中,還有另一大類為適應工業(yè)現(xiàn)場環(huán)境而設計的系統(tǒng)總線,比如STD總線、VME總線、PC/104總線等。這里僅介紹當前工業(yè)計算機的熱門總線之一--Compact PCI。
----Compact PCI的意思是"堅實的PCI",是當今第一個采用無源總線底板結構的PCI系統(tǒng),是PCI總線的電氣和軟件標準加歐式卡的工業(yè)組裝標準,是當今最新的一種工業(yè)計算機標準。 Compact PCI是在原來PCI總線基礎上改造而來,它利用PCI的優(yōu)點,提供滿足工業(yè)環(huán)境應用要求的高性能核心系統(tǒng),同時還考慮充分利用傳統(tǒng)的總線產(chǎn)品,如ISA、STD、VME或PC/104來擴充系統(tǒng)的I/O和其他功能。
----6.PCI-E總線
----PCI Express采用的也是業(yè)內流行這種點對點串行連接,比起PCI以及更早期的計算機總線的共享并行架構,每個設備都有自己的專用連接,不需要向整個總線請求帶寬,而且可以把數(shù)據(jù)傳輸率提高到一個很高的頻率,達到PCI所不能提供的高帶寬。相對于傳統(tǒng)PCI總線在單一時間周期內只能實現(xiàn)單向傳輸,PCI Express的雙單工連接能提供更高的傳輸速率和質量,它們之間的差異跟半雙工和全雙工類似。
系統(tǒng)總線上傳送的信息包括數(shù)據(jù)信息、地址信息、控制信息,因此,系統(tǒng)總線包含有三種不同功能的總線,即數(shù)據(jù)總線DB(Data Bus)、地址總線AB(Address Bus)和控制總線CB(Control Bus)。
數(shù)據(jù)總線DB用于傳送數(shù)據(jù)信息。數(shù)據(jù)總線是雙向三態(tài)形式(雙向是指可以兩個方向傳輸,可以A->B也可以A<-B;三態(tài)指 0,1和第三態(tài)(tri-state)。tri-state既不是一也不是零,三態(tài)門的閉合無輸出高阻狀態(tài)。)的總線,即他既可以把CPU的數(shù)據(jù)傳送到存儲器或I/O接口等其它部件,也可以將其它部件的數(shù)據(jù)傳送到CPU。數(shù)據(jù)總線的位數(shù)是微型計算機的一個重要指標,通常與微處理的字長相一致。例如Intel 8086微處理器字長16位,其數(shù)據(jù)總線寬度也是16位。需要指出的是,數(shù)據(jù)的含義是廣義的,它可以是真正的數(shù)據(jù),也可以指令代碼或狀態(tài)信息,有時甚至是一個控制信息,因此,在實際工作中,數(shù)據(jù)總線上傳送的并不一定僅僅是真正意義上的數(shù)據(jù)。
地址總線AB是專門用來傳送地址的,由于地址只能從CPU傳向外部存儲器或I/O端口,所以地址總線總是單向三態(tài)的,這與數(shù)據(jù)總線不同。地址總線的位數(shù)決定了CPU可直接尋址的內存空間大小,比如8位微機的地址總線為16位,則其最大可尋址空間為2^16=64KB,16位微型機的地址總線為20位,其可尋址空間為2^20=1MB。一般來說,若地址總線為n位,則可尋址空間為2^n(2的n次方)個地址空間(存儲單元)。 舉例來說:一個16位元寬度的位址總線(通常在1970年和1980年早期的8位元處理器中使用)可以尋址的內存空間為 2 的 16 次方=65536=64 KB的地址,而一個 32位元 位址總線(通常在像現(xiàn)今 2004年 的 PC 處理器中) 可以尋址的內存空間為4,294,967,296=4GB(前提:數(shù)據(jù)總線的寬度是8位)的位址。
注釋:位元=bit。
上面提到的2^n=X=YGB中的B其實是bit,這個結果其實是乘以可尋址的位元8bit之后得到的。
控制總線CB用來傳送控制信號和時序信號??刂菩盘栔?,有的是微處理器送往存儲器和I/O接口電路的,如讀/寫信號,片選信號、中斷響應信號等;也有是其它部件反饋給CPU的,比如:中斷申請信號、復位信號、總線請求信號、限備就緒信號等。因此,控制總線的傳送方向由具體控制信號而定,一般是雙向的,控制總線的位數(shù)要根據(jù)系統(tǒng)的實際控制需要而定。實際上控制總線的具體情況主要取決于CPU。
前端總線總線速率
超頻和相關總線速率
中央處理器(CPU)
中央處理器的時鐘頻率速度(簡稱內頻)由系統(tǒng)總線速率(bus speed)乘上倍頻系數(shù)決定。例如,一個時鐘頻率速度為 700MHz 的處理器,可能運行于 100MHz 的系統(tǒng)總線上。這說明處理器內的時鐘倍頻器的倍率設置為7,即中央處理器被設置為以7倍于系統(tǒng)總線的速率運行:100 MHz×7 = 700 MHz。通過改變倍頻系數(shù)或系統(tǒng)總線速率,可以得到不同的時鐘頻率速度。以前經(jīng)常套用的規(guī)則認為:時鐘頻率速度=外頻(前端總線、FSB)*倍頻系數(shù)。這句話嚴格來說并不正確。因為現(xiàn)在系統(tǒng)總線、前端總線(外頻、FSB)速率不一樣。就 Intel CPU 來說,前端總線=系統(tǒng)總線*4。所以,應該說時鐘頻率速度=系統(tǒng)總線*倍頻系數(shù)。大多數(shù)主板允許用戶通過跳線設置(BIOS)設置倍頻或系統(tǒng)總線速率。現(xiàn)在許多處理器制造商預先鎖定了處理器的倍頻,但可以通過某些手段解鎖。對所有的處理器,系統(tǒng)總線速率的適當提高可以增進其處理速率。
前端總線與系統(tǒng)總線
系統(tǒng)總線(BusSpeed)與前端總線(FSB、外頻)的區(qū)別在于,前端總線(FSB、外頻)的速度指的是CPU和北橋芯片間總線的速度。而系統(tǒng)總線(BusSpeed)的概念是創(chuàng)建在數(shù)字脈沖信號震蕩速度基礎之上的,也就是說,100MHz系統(tǒng)總線(BusSpeed)特指數(shù)字脈沖信號在每秒鐘震蕩一百萬次,它更多的影響了PCI及其他總線的頻率。之所以前端總線(FSB、外頻)與系統(tǒng)總線(BusSpeed)這兩個概念容易混淆,主要的原因是在以前的很長一段時間里,前端總線(FSB、外頻)與系統(tǒng)總線(BusSpeed)是相同速率,因此往往直接稱系統(tǒng)總線(BusSpeed)為外頻,最終造成這樣的誤會。隨著電腦技術的發(fā)展,人們發(fā)現(xiàn)前端總線頻率(外頻、FSB)需要高于系統(tǒng)總線(BusSpeed),因此采用了QDR(Quad Date Rate)技術,或者其他類似的技術實現(xiàn)這個目的。這些技術的原理類似于AGP的2X或者4X,它們使得的前端總線(FSB、外頻)頻率成為系統(tǒng)總線(BusSpeed)的2倍、4倍甚至更高,從此之后系統(tǒng)總線(BusSpeed)和前端總線(FSB、外頻)的區(qū)別才開始被人們重視起來。