中文名 | 傳輸門 | 外文名 | Transmission Gate |
---|
TP和TN是結(jié)構(gòu)對稱的器件,它們的漏極和源極是可互換的。設(shè)它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到 5V。為使襯底與漏源極之間的PN結(jié)任何時刻都不致正偏,故TP的襯底接 5V電壓,而TN的襯底接-5V電壓。兩管的柵極由互補的信號電壓( 5V和-5V)來控制,分別用C和!C表示。傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到 5V范圍內(nèi)的任意值時,TN不導通。同時、TP的柵壓為 5V,TP亦不導通??梢?,當C端接低電壓時,開關(guān)是斷開的。為使開關(guān)接通,可將C端接高電壓 5V。此時TN的柵壓為 5V,vI在-5V到 3V的范圍內(nèi),TN導通。同時TP的棚壓為-5V,vI在-3V到 5V的范圍內(nèi)TP將導通。由上分析可知,當vI<-3V時,僅有TN導通,而當vI> 3V時,僅有TP導通當vI在-3V到 3V的范圍內(nèi),TN和TP兩管均導通。進一步分析還可看到,一管導通的程度愈深,另一管的導通程度則相應(yīng)地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由于兩管系并聯(lián)運行,可近似地認為開關(guān)的導通電阻近似為一常數(shù)。這是CMOS傳輸出門的優(yōu)點。在正常工作時,模擬開關(guān)的導通電阻值約為數(shù)百歐,當它與輸入阻抗為兆歐級的運放串接時,可以忽略不計。
用一對極性相反的三極管也能構(gòu)成傳輸門。
如圖3所示,若P=0,N=1:
當A作為輸入端且為高電平時,信號從上面的三極管傳輸?shù)紹端輸出(P端三極管導通);若A為低電平,則通過下面的三極管送到B端(N端三極管導通)。
當B作為輸入端且為高電平時,信號從下面的三極管送到A端輸出(N端三極管導通);若為低電平,則從上面的三極管傳輸?shù)紸端(P端三極管導通)。
若P=1,N=0,則兩個三極管都截止,此時A、B之間相當于斷開的開關(guān)。
因為是P=0,N=1時打開傳輸門,所以畫出的電路符號上是P上有小圓圈,N上沒有。
所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關(guān)。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET并聯(lián)而成,如圖1所示。
所謂“級聯(lián)傳輸”,就是將一路VGA信號從到一個接收器上后,再從這個接收器到下一級接收器上,依此類推,將多個顯示點用一根網(wǎng)線串接起來,達到傳輸高清VGA信號的目的。高清VGA信號級聯(lián)傳輸在實際應(yīng)用上具有...
DVI就是高清視頻信號,DVI也可以說成一個DVI接口,該光端機就是專門為了傳輸DVI信號研發(fā)的類似于VGA光端機HDMI光端機SDI光端機,都是傳輸高清視頻信號的。不同的只是接口不一樣。傳輸距離取決...
你好,網(wǎng)線的傳輸原理其實是網(wǎng)卡的原理。很簡單,以下幾點。一,網(wǎng)線傳輸信號是數(shù)字信號,方波,相當脆弱,容易受到周邊磁場和自身的干撓。所以雙絞的原理就是為了盡可能的消除其干撓。二,明白了網(wǎng)線所接的水晶頭:...
MOSFET的輸出特性在原點附近呈線性對稱關(guān)系,因而它們常用作模擬開關(guān)。模擬開關(guān)廣泛地用于取樣——保持電路、斬波電路、模數(shù)和數(shù)模轉(zhuǎn)換電路等。在數(shù)字邏輯電路設(shè)計中,傳輸門左端為輸入,右端為輸出,上端C反、下端C為控制端,當C反為0,C為1時TG門開通,此時右端輸出out=左端輸入in。
格式:pdf
大?。?span id="ys2ivbs" class="single-tag-height">4.9MB
頁數(shù): 43頁
評分: 4.7
傳輸基礎(chǔ)入門知識
可視門鈴采用了2.4G視頻傳輸技術(shù),這個頻段里是國際規(guī)定的免費頻段,是不需要向國際相關(guān)組織繳納任何費用的。這就為2.4G無線技術(shù)可發(fā)展性提供了必要的有利條件。而且2.4G無線技術(shù)不同于之前的27MHz無線技術(shù),它的工作方式是全雙工模式傳輸,在抗干擾性能上要比27MHz有著絕對的優(yōu)勢。這個優(yōu)勢決定了它的超強抗干擾性以及最大可達10米的傳輸距離。此外2.4G無線技術(shù)還擁有理論上2M的數(shù)據(jù)傳輸速率,比藍牙的1M理論傳輸速率提高了一倍。這一技術(shù)的加入為讓可視門鈴更佳穩(wěn)定。
光纖傳輸傳輸原理
光纖傳輸設(shè)備傳輸方式可簡單的分成:多模光纖傳輸設(shè)備和單模光纖傳輸設(shè)備。光纖,不僅可用來傳輸模擬信號和數(shù)字信號,而且滿足視頻傳輸?shù)男枨?。其?shù)據(jù)傳輸率能達幾千Mbps。如果在不使用中繼器的情況下,傳輸范圍能達到6-8km。
綜觀國內(nèi)外配線系統(tǒng)的發(fā)展,我們可看出這樣三個階段:
1、雙絞線階段。在這個階段語音同大規(guī)模數(shù)據(jù)通信不能混用也適應(yīng)這樣的數(shù)據(jù)通信。
2、同軸電纜 雙絞線階段。
3、光纖階段。
射線光學理論是用光射線去代替光能量傳輸路線的方法,這種理論對于光波長遠遠小于光波到尺寸的多模光纖是容易得到簡單而直觀的分析結(jié)果的,但對于復雜問題,射線光學只能給出比較粗糙的概念。
多模光纖傳輸設(shè)備所采用的光器件是LED,通常按波長可分為850nm和1300nm兩個波長,按輸出功率可分為普通LED和增強LED——ELED。多模光纖傳輸所用的光纖,有62.5mm和50mm兩種。
在多模光纖上傳輸決定傳輸距離的主要因素是光纖的帶寬和LED的工作波長,例如,如果采用工作波長1300nm的LED和50微米的光纖,其傳輸帶寬是 400 MHz .km,鏈路衰減為0.7dB/km,如果基帶傳輸頻率F為150MHz,對于出纖功率為-18dBm,接收靈敏度為-25 dBm的光纖傳輸系統(tǒng),其最大鏈路損耗為7 dB,則可計算:
ST連接器損耗:
2dB(兩個ST連接器)
光學損耗裕量:2
則理論傳輸距離:
L=(7 dB-2 dB-2 dB)/0.7dB/km=4.2 km
L為傳輸距離,而根據(jù)光纖的帶寬計算:
L=B/F=400 MHz .km/150MHz=2.6km
其中 B為光纖帶寬,F(xiàn)為基帶傳輸頻率,那么實際傳輸測試時,L£2.6km,由此可見,決定傳輸距離的主要因素是多模光纖的帶寬。
1、單模傳輸設(shè)備
單模傳輸設(shè)備所采用的光器件是LD,通常按波長可分為850nm和1300nm兩個波長,按輸出功率可分為普通LD、高功率LD、DFB-LD(分布反饋光器件)。單模光纖傳輸所用的光纖最普遍的是G.652,其線徑為9微米。
1310nm波長的光在G.652光纖上傳輸時,決定其傳輸距離限制的是衰減因數(shù);因為在1310nm波長下,光纖的材料色散與結(jié)構(gòu)色散相互抵消總的色散為0,在1310nm波長上有微小振幅的光信號能夠?qū)崿F(xiàn)寬頻帶傳輸。
1550nm波長的光在G.652光纖上傳輸時衰減因數(shù)很小,單純從衰減因數(shù)考慮,1550nm波長的光在相同的光功率下傳輸?shù)木嚯x大于1310nm波長的光下的傳輸?shù)木嚯x,但是實際情況并非如此,單模光纖帶寬B與色散因數(shù)D的關(guān)系為:
B=132.5/(DlxDxL)GHz
其中L為光纖的長度,Dl為譜線寬度,對于1550nm波長的光,其色散因數(shù)如表3為20 ps/(nm .km),假設(shè)其光譜寬度等于1nm,傳輸距離為L=50公里,則有:
B=132.5/(DxL)GHz=132.5MHz
也就是說,對于模擬波形,采用1550nm波長的光,當傳輸距離為50公里時,傳輸帶寬已經(jīng)小于132.5 MHz,如果基帶傳輸頻率F為150MHz,那么傳輸距離已經(jīng)小于50km,況且實際應(yīng)用中,光源的譜線寬度往往大于1nm。
從上式可以看出,1550nm波長的光在G.652光纖上傳輸時決定其傳輸距離限制的主要是色散因數(shù)。
2、單模
DVI光纖延長器:(可傳輸HDMI音視頻信號)T803-15KM-T (TX) / T803-15KM-R (RX),產(chǎn)品致力于解決傳統(tǒng)銅線電纜DVI連接線傳輸距離受限制的問題,采用2芯LC單模光纖傳輸R、G、B信號及數(shù)據(jù)時鐘Clock信號,在分辨率高達1920×1200@60Hz的情況下,可以延伸傳輸距離到15千米。具有EDID讀寫功能,可以將顯示器里的EDID存儲內(nèi)容讀出并寫到DVI發(fā)射模塊T803-15KM-T(TX)中,使其能夠適應(yīng)不同分辨率的顯示器系統(tǒng)。
遠距離信號傳輸光纖傳輸?shù)膬?yōu)勢
市面上主要的視頻傳輸線有單根導線、雙絞線、同軸電纜等,不論任何的電纜類型,它們都是作為信號傳輸?shù)囊环N導體。這些不同類型的電纜,在傳輸不同信號的質(zhì)量表現(xiàn)也有區(qū)別,除了部分特殊的應(yīng)用,應(yīng)用于音視頻傳輸?shù)碾娎|大致以單根導線、雙絞線、同軸線和光纖為主。
1、光纖幾乎不存在任何衰減,只有l(wèi)c或sc頭自身略有衰減,而且這并不會造成距離上的影響,通常在20dB以內(nèi),完全忽略不計。除非這條光纖距離太長,例如長達2.2公里的多模光纖,在傳輸中就徹底沒信號了,否則只要有信號,速度就是與發(fā)送端相當?shù)摹?
2、抗干擾性強、零掉包率,無論在光纖周圍盤繞著多么復雜的強電,傳輸速度始終保持一致。此外,傳輸過程中掉包現(xiàn)象的概率幾乎為零,測試時200成品多模跳線作為干線,電信的軟件在滿機時是測不出來。
3、使用壽命很長、兼容性高,市場上一般的光纖可以用到10年甚至更久,這一點銅纜網(wǎng)線是無法相比的。而且兼容性很高,光纖在未來網(wǎng)絡(luò)高速提升中,無論是1兆10兆甚至未來的萬兆,10萬兆,任何一條跳線都是通用的,不會像銅纜網(wǎng)線那樣有5類6類甚至十幾類,不會存在淘汰的問題。
3、新紀錄
2011年3月美國洛杉磯舉辦的2011年光纖通訊大會(OFC2011)上展示了最新的光纖傳輸技術(shù)。這是德國弗朗霍夫?qū)W會海因里希-赫茲研究所與丹麥技術(shù)大學研究人員合作完成的,研究人員在長度為29公里的單一玻璃光纖線路上創(chuàng)造了每秒10.2Terabit(太比特)的光纖傳輸速率新世界紀錄,其每秒傳輸?shù)臄?shù)據(jù)量相當于240張DVD光盤。在此之前的世界紀錄是由該研究所創(chuàng)造的每秒2.56Terabit。
2011年12月1日,武漢郵電科學研究院宣布,高速光通信實時傳輸關(guān)鍵技術(shù)研究取得突破,在一根光纖上,用正交頻分復用技術(shù)方式傳輸?shù)臄?shù)據(jù)量超過240Gb/秒,相當于每秒鐘能適時傳輸240部容量為1G、長度為40分鐘的高清電影,又一次刷新世界光通信領(lǐng)域紀錄。
光纖的傳輸損耗特性是決定光網(wǎng)絡(luò)傳輸距離、傳輸穩(wěn)定性和可靠性的最重要因素之一。光纖傳輸損耗的產(chǎn)生原因是多方面的,在光纖通信網(wǎng)絡(luò)的建設(shè)和維護中,最值得關(guān)注的是光纖使用中引起傳輸損耗的原因以及如何減少這些損耗。光纖使用中引起的傳輸損耗主要有接續(xù)損耗(光纖的固有損耗、熔接損耗和活動接頭損耗)和非接續(xù)損耗(彎曲損耗和其它施工因素和應(yīng)用環(huán)境所造成的損耗)兩類。