中文名 | PID整定 | 外文名 | PID Setting |
---|---|---|---|
別????名 | PID參數(shù)整定 |
Ziegler-Nichol響應(yīng)曲線法 ,是根據(jù)被控對(duì)象的階躍響應(yīng)曲線獲取被控對(duì)象的模型式(1),根據(jù)模型的增益K,時(shí)間常數(shù)T以及純滯后時(shí)間,再利用如下的經(jīng)驗(yàn)公式(2)整定PID控制器參數(shù)。
公式(1):
公式(2):
一般來(lái)說(shuō)由于Z-N整定的PID控制器超調(diào)較大。為此C.C.Hang提出改進(jìn)的Z-N法[8],通過(guò)給定值加權(quán)和修正積分常數(shù)改善了系統(tǒng)的超調(diào)。這種方法被認(rèn)為是Z-N法最成功的改進(jìn)。
Ziegler-Nichols臨界振蕩法只對(duì)開(kāi)環(huán)穩(wěn)定對(duì)象適用。該方法首先對(duì)被控對(duì)象施加一個(gè)比例控制器,并且其增益很小,然后逐漸增大增益使系統(tǒng)出現(xiàn)穩(wěn)定振蕩·則此時(shí)臨界振蕩增益就是比例控制器的數(shù)值K,,振蕩周期就是系統(tǒng)的振蕩周期凡,然后根據(jù)公式(3)整定PID控制器參數(shù)。
公式(3):
類似的整定方法有Cohen-Coon響應(yīng)曲線方法[9],該方法同Ziegler-Nichols響應(yīng)曲線法操作相同,只是整定公式不同,其整定公式如式(4):
公式(4):
為評(píng)價(jià)控制性能的優(yōu)劣,定義了多種積分性能指標(biāo),基于誤差性能指標(biāo)的參數(shù)整定方法 是以控制系統(tǒng)瞬時(shí)誤差函數(shù)e(θ,t)的泛函積分評(píng)價(jià)Jn(θ)為最優(yōu)控制指標(biāo),它是評(píng)價(jià)控制系統(tǒng)性能的一類標(biāo)準(zhǔn),是系統(tǒng)動(dòng)態(tài)特性的一種綜合性能指標(biāo),一般以誤差函數(shù)的積分形式表示。其中Jn(θ)的基本形式如式(5):
公式(5):
n=0,m=0IAE
n=0,m=2ISE
n=1,m=2ISTE
Jn(θ)可以是ISE,1AE,1STE,1TAE等,然后經(jīng)過(guò)尋優(yōu),搜索出一組PID控制器參數(shù)Kc,Ti,Td,使Jn(θ)的取值為最小,此時(shí)的PID控制器參數(shù)為最優(yōu)。
根據(jù)內(nèi)??刂葡到y(tǒng) , 與常規(guī)反饋控制系統(tǒng)間存在的對(duì)應(yīng)關(guān)系,必要時(shí)對(duì)模型進(jìn)行降階簡(jiǎn)化處理,便可完成IMC-PID設(shè)計(jì)
圖中Gp(s)為實(shí)際被控過(guò)程對(duì)象,Gm(s)為被控過(guò)程的數(shù)學(xué)模型,即內(nèi)部模型,Q(s)為內(nèi)模控制器,它等于Gm(s)的最小相位部分的逆模型。u為內(nèi)模控制器的輸出,r,y,d分別為控制系統(tǒng)的輸入、輸出和干擾信號(hào)。
為抑制模型誤差對(duì)系統(tǒng)的影響,增強(qiáng)系統(tǒng)的魯棒性,在控制器中加人一個(gè)低通濾波器F(s),一般F(s)取最簡(jiǎn)單形式如下:
公式(6):
式中階次n取決于模型的階次以使控制器可實(shí)現(xiàn),r為時(shí)間常數(shù)。則內(nèi)模控制等效的控制器為:
公式(7):
對(duì)于如式(1)表示的一階加純滯后過(guò)程,采用一階Pade近似,得到如下模型:
公式(8):
將式(8)的最小相位部分代入式(7),可得到如下的PID控制器參數(shù):
公式(9):
PID控制算法(ProportionalIntegral-Differential,比例一積分一微分)作為一種最常規(guī),最經(jīng)典的控制算法,經(jīng)過(guò)了長(zhǎng)期的實(shí)踐檢驗(yàn)。因?yàn)檫@種控制具有簡(jiǎn)單的結(jié)構(gòu),對(duì)模型誤差具有魯棒性及易于操作等優(yōu)點(diǎn),在實(shí)際應(yīng)用中又較易于整定,所以它在工業(yè)過(guò)程控制中有著廣泛的應(yīng)用 。有調(diào)查表明,在煉油、化工、造紙等過(guò)程超過(guò)11,000個(gè)控制器中,有超過(guò)9796的控制器是PID類控制器 ,PID控制器在嵌入式系統(tǒng)中的應(yīng)用也在增長(zhǎng)[6]。
確定控制器參數(shù) 數(shù)字PID控制器控制參數(shù)的選擇,可按連續(xù)-時(shí)間PID參數(shù)整定方法進(jìn)行。 在選擇數(shù)字PID參數(shù)之前,首先應(yīng)該確定控制器結(jié)構(gòu)。對(duì)允許有靜差(或穩(wěn)態(tài)誤差)的系統(tǒng),可以適當(dāng)選擇P或PD...
PID參數(shù)的如何設(shè)定調(diào)節(jié)
控制電動(dòng)閥的開(kāi)度來(lái)達(dá)到控制溫度是可以的,我個(gè)人認(rèn)為用比例電磁閥替代電動(dòng)閥完全可以實(shí)現(xiàn)PID的控制。因?yàn)楸壤姶砰y有標(biāo)準(zhǔn)的模擬量輸入信號(hào)和反饋信號(hào)而且具有PID調(diào)節(jié)功能。經(jīng)過(guò)多年的工作經(jīng)驗(yàn),我個(gè)人認(rèn)為P...
操作面板上就有,說(shuō)明書(shū)上也有標(biāo)注
格式:pdf
大?。?span id="qxfvb12" class="single-tag-height">100KB
頁(yè)數(shù): 1頁(yè)
評(píng)分: 4.5
為進(jìn)一步提高工業(yè)生產(chǎn)過(guò)程中的溫度控制精度,本文以工業(yè)電阻爐的溫度控制器設(shè)計(jì)作為主要月那就內(nèi)容,通過(guò)對(duì)系統(tǒng)的模糊化原理進(jìn)行闡述和分析,進(jìn)而對(duì)基于AT89C52單片機(jī)的溫度電阻爐的模糊控制規(guī)則與模糊PID參數(shù)自整定方法展開(kāi)了深入研究。
格式:pdf
大?。?span id="ydsnenl" class="single-tag-height">100KB
頁(yè)數(shù): 4頁(yè)
評(píng)分: 4.7
PID控制在中央空調(diào)領(lǐng)域得到了廣泛應(yīng)用。介紹了PID參數(shù)整定的幾種方法,然后采用頻域分析法,對(duì)這幾種整定方法進(jìn)行了分析。中央空調(diào)系統(tǒng)控制的復(fù)雜性已向傳統(tǒng)的PID控制提出了挑戰(zhàn)。
PID控制器的參數(shù)整定是控制系統(tǒng)設(shè)計(jì)的核心內(nèi)容。它是根據(jù)被 控過(guò)程的特性確定PID控制器的比例系數(shù)、積分時(shí)間和微分時(shí)間的大小。PID控制器參數(shù)整定的方法很多,概括起來(lái)有兩大類:一是理論計(jì)算整定法。它主要是 依據(jù)系統(tǒng)的數(shù)學(xué)模型,經(jīng)過(guò)理論計(jì)算確定控制器參數(shù)。這種方法所得到的計(jì)算數(shù)據(jù)未必可以直接用,還必須通過(guò)工程實(shí)際進(jìn)行調(diào)整和修改。二是工程整定方法,它主 要依賴工程經(jīng)驗(yàn),直接在控制系統(tǒng)的試驗(yàn)中進(jìn)行,且方法簡(jiǎn)單、易于掌握,在工程實(shí)際中被廣泛采用。PID控制器參數(shù)的工程整定方法,主要有臨界比例法、反應(yīng) 曲線法和衰減法。三種方法各有其特點(diǎn),其共同點(diǎn)都是通過(guò)試驗(yàn),然后按照工程經(jīng)驗(yàn)公式對(duì)控制器參數(shù)進(jìn)行整定。但無(wú)論采用哪一種方法所得到的控制器參數(shù),都需 要在實(shí)際運(yùn)行中進(jìn)行最后調(diào)整與完善。現(xiàn)在一般采用的是臨界比例法。利用該方法進(jìn)行 PID控制器參數(shù)的整定步驟如下:(1)首先預(yù)選擇一個(gè)足夠短的采樣周期讓系統(tǒng)工作;(2)僅加入比例控制環(huán)節(jié),直到系統(tǒng)對(duì)輸入的階躍響應(yīng)出現(xiàn)臨界振蕩, 記下這時(shí)的比例放大系數(shù)和臨界振蕩周期;(3)在一定的控制度下通過(guò)公式計(jì)算得到PID控制器的參數(shù)。
在實(shí)際調(diào)試中,只能先大致設(shè)定一個(gè)經(jīng)驗(yàn)值,然后根據(jù)調(diào)節(jié)效果修改。
對(duì)于溫度系統(tǒng):P(%)20--60,I(分)3--10,D(分)0.5--3
對(duì)于流量系統(tǒng):P(%)40--100,I(分)0.1--1
對(duì)于壓力系統(tǒng):P(%)30--70,I(分)0.4--3
對(duì)于液位系統(tǒng):P(%)20--80,I(分)1--5
參數(shù)整定找最佳,從小到大順序查
先是比例后積分,最后再把微分加
曲線振蕩很頻繁,比例度盤要放大
曲線漂浮繞大灣,比例度盤往小扳
曲線偏離回復(fù)慢,積分時(shí)間往下降
曲線波動(dòng)周期長(zhǎng),積分時(shí)間再加長(zhǎng)
曲線振蕩頻率快,先把微分降下來(lái)
動(dòng)差大來(lái)波動(dòng)慢。微分時(shí)間應(yīng)加長(zhǎng)
理想曲線兩個(gè)波,前高后低4比1
一看二調(diào)多分析,調(diào)節(jié)質(zhì)量不會(huì)低
通過(guò)比較,模糊自整定PID控制器優(yōu)勢(shì)如下:
(1)模糊自整定PID控制器的參數(shù)調(diào)整較快。從系統(tǒng)響應(yīng)上看,其穩(wěn)態(tài)響應(yīng)過(guò)程比常規(guī)PID控制器快。
(2)通過(guò)比較可知,模糊自整定PID控制器能有效地抑制隨機(jī)干擾,能及時(shí)對(duì)PID控制器的參數(shù)進(jìn)行在線調(diào)整,并以比常規(guī)PID控制器更小的誤差和更快的速度重新進(jìn)入穩(wěn)態(tài)工作點(diǎn),它的抗干擾特性要優(yōu)于常規(guī)PID控制器。
模糊自整定PID控制器具有方法簡(jiǎn)便、調(diào)整靈活、實(shí)用性強(qiáng)等特點(diǎn)。仿真結(jié)果表明,模糊自整定PID控制器在線參數(shù)自整定能力強(qiáng),對(duì)抑制干擾和噪聲是有效的,能提高控制系統(tǒng)的品質(zhì),具有較強(qiáng)的自適應(yīng)能力和較好的魯棒性。2100433B
前言
第1章 緒論
第2章 PID控制器參數(shù)整定方法
第3章 分?jǐn)?shù)階PID控制器的參數(shù)整定
第4章 基于QDRNN的多變量PID控制器參數(shù)整定
第5章 數(shù)字PID控制器的FPGA實(shí)現(xiàn)
第6章 基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器的FPGA實(shí)現(xiàn)
第7章 基于遺傳算法的PID控制器的FPGA實(shí)現(xiàn)
第8章 基于粒子群算法的PID控制器的FPGA實(shí)現(xiàn)
附錄
參考文獻(xiàn)