中文名 | 物理學 | 外文名 | Physics |
---|---|---|---|
學科門類 | 自然科學 | 學科分類 | 一級學科 |
研究內容 | 運動、相互作用、時空、基本粒子 | 學科應用 | 天文、電子、化學、對稱性質等問題 |
代表人物 | 伽利略、牛頓、愛因斯坦 | 代表著作 | 《自然哲學的數學原理》、《論動體的電動力學》、《量子力學概論》 |
學科起源 | 人類社會實踐的發(fā)展 | 物理語言 | 物理模型、物理定律、物理公式、物理圖像 |
●伽利略·伽利雷(1564~1642),人類現代物理學的創(chuàng)始人,奠定了人類現代物理科學的發(fā)展基礎。
● 1900~1926年 建立了量子力學。
● 1926年 建立了費米-狄拉克統(tǒng)計。
● 1927年 建立了布洛赫波的理論。
● 1928年 索末菲提出能帶的猜想。
● 1929年 派爾斯提出禁帶、空穴的概念,同年貝特提出了費米面的概念。
● 1947年 貝爾實驗室的巴丁、布拉頓和肖克萊發(fā)明了晶體管,標志著信息時代的開始。
● 1957年 皮帕得測量了第一個費米面超晶格材料納米材料光子。
● 1958年 杰克·基爾比發(fā)明了集成電路。
● 20世紀70年代出現了大規(guī)模集成電路。
物理與物理技術的關系:
● 熱機的發(fā)明和使用,提供了第一種模式:技術 —— 物理 —— 技術
● 電氣化的進程,提供了第二種模式:物理 —— 技術 —— 物理
當今物理學和科學技術的關系兩種模式并存,相互交叉,相互促進?!皼]有昨日的基礎科學,就沒有今日的技術革命”。例如:核能的利用、激光器的產生、層析成像技術(CT)、超導電子技術、粒子散射實驗、X 射線的發(fā)現、受激輻射理論、低溫超導微觀理論、電子計算機的誕生。幾乎所有的重大新(高)技術領域的創(chuàng)立,事先都在物理學中經過長期的醞釀。
物理學是一門自然科學,注重于研究物質、能量、空間、時間,尤其是它們各自的性質與彼此之間的相互關系。物理學是關于大自然規(guī)律的知識;更廣義地說,物理學探索并分析大自然所發(fā)生的現象,以了解其規(guī)則。
物理學(physics)的研究對象:物理現象、物質結構、物質相互作用、物質運動規(guī)律。
物理學研究的尺度——物質世界的層次和數量級
空間尺度:
原子、原子核、基本粒子、DNA長度、最小的細胞、星系團、銀河系、恒星的距離、太陽系、超星系團,哈勃半徑等。人蛇吞尾圖形象地表示了物質空間尺寸的層次。
微觀粒子(microscopic):質子
介觀物質(mesoscopic)
宏觀物質(macroscopic)
宇觀物質(cosmological)類星體
時間尺度:
基本粒子壽命 10-25s
宇宙壽命 1018s
按空間尺度劃分:量子力學、經典物理學、宇宙物理學。
按速率大小劃分: 相對論物理學、非相對論物理學。
按客體大小劃分:微觀、介觀、宏觀、宇觀。
按運動速度劃分:低速、中速、高速。
按研究方法劃分:實驗物理學、理論物理學、計算物理學。
物理學研究的領域可分為下列四大方面:
1. 凝聚態(tài)物理——研究物質宏觀性質,這些物相內包含極大數目的組元,且組元間相互作用極強。最熟悉的凝聚態(tài)相是固體和液體,它們由原子間的鍵和電磁力所形成。更多的凝聚態(tài)相包括超流和玻色-愛因斯坦凝聚態(tài)(在十分低溫時,某些原子系統(tǒng)內發(fā)現);某些材料中導電電子呈現的超導相;原子點陣中出現的鐵磁和反鐵磁相。凝聚態(tài)物理一直是最大的的研究領域。歷史上,它由固體物理生長出來。1967年由菲立普·安德森最早提出,采用此名。
2. 原子、分子和光學物理——研究原子尺寸或幾個原子結構范圍內,物質-物質和光-物質的相互作用。這三個領域是密切相關的。因為它們使用類似的方法和有關的能量標度。它們都包括經典和量子的處理方法;從微觀的角度處理問題。原子物理處理原子的殼層,集中在原子和離子的量子控制;冷卻和誘捕;低溫碰撞動力學;準確測量基本常數;電子在結構動力學方面的集體效應。原子物理受核的影晌。但如核分裂、核合成等核內部現象則屬高能物理。 分子物理集中在多原子結構以及它們,內外部和物質及光的相互作用,這里的光學物理只研究光的基本特性及光與物質在微觀領域的相互作用。
3. 高能/粒子物理——粒子物理研究物質和能量的基本組元及它們間的相互作用;也可稱為高能物理。因為許多基本粒子在自然界原本并不存在,只在粒子加速器中與其它粒子高能碰撞下才出現。據基本粒子的相互作用標準模型描述,有12種已知物質的基本粒子模型(夸克和輕粒子)。它們通過強、弱和電磁基本力相互作用。標準模型還預言一種希格斯-玻色粒子存在?,F正尋找中。
4. 天體物理——天體物理和現代天文學是將物理的理論和方法應用于研究星體的結構和演變、太陽系的起源,以及宇宙的相關問題。因為天體物理的范圍寬,它利用了物理的許多原理,包括力學、電磁學、統(tǒng)計力學、熱力學和量子力學。1931年,卡爾發(fā)現了天體發(fā)出的無線電訊號,開始了無線電天文學。天文學的前沿已被空間探索所擴展。地球大氣的干擾使觀察空間需要用到紅外、超紫外、伽瑪射線和X射線。物理宇宙論研究在宇宙的大范圍內宇宙的形成和演變。愛因斯坦的相對論在現代宇宙理論中起了中心的作用。20世紀早期哈勃從圖中發(fā)現了宇宙在膨脹,促進了宇宙的穩(wěn)定狀態(tài)論和大爆炸之間的討論。1964年宇宙微波背景的發(fā)現,證明了大爆炸理論可能是正確的。大爆炸模型建立在二個理論框架上:愛因斯坦的廣義相對論和宇宙論原理。宇宙論已建立了ACDM宇宙演變模型,它包括宇宙的膨脹、暗能量和暗物質。 從費米伽瑪-射線望遠鏡的新數據和現有宇宙模型的改進,可期待出現許多可能性和發(fā)現。尤其是今后數年內,圍繞暗物質方面可能有許多發(fā)現。
樓主我有電子檔的你要不!
物理學的,我們現在就在教, 物理學是研究光、熱、力、聲、電等物理現象的規(guī)律和物質結構的一門科學,其中電路圖就是屬于電學的,還有,在化學也有少量涉及到,因為在以前,化學和物理是合為同一門學科的
揚聲器的工作原理簡單說,是“通電導體(線圈)在磁場中受到力的作用”.當交流音頻電流通過揚聲器的線圈(在揚聲器中又叫做音圈)時,音圈中就產生了相應的磁場.這個磁場與揚聲器上自帶的永磁體產生的磁場產生相互...
歷屆諾貝爾物理學獎獲得者:
1901年 |
威爾姆·康拉德·倫琴(德國人) |
發(fā)現X射線 |
1902年 |
亨德瑞克·安圖恩·洛倫茲、P. 塞曼(荷蘭人) |
研究磁場對輻射的影響 |
1903年 |
安東尼·亨利·貝克勒爾(法國人) |
發(fā)現物質的放射性 |
皮埃爾·居里(法國人)、瑪麗·居里(波蘭人) |
從事鐳元素的研究 |
|
1904年 |
J. W. 瑞利(英國人) |
從事氣體密度的研究并發(fā)現氬元素 |
1905年 |
P. E. A. 雷納爾德(德國人) |
從事陰極線的研究 |
1906年 |
約瑟夫·約翰·湯姆生(英國人) |
對氣體放電理論和實驗研究作出重要貢獻 |
1907年 |
A. A. 邁克爾遜(美國人) |
發(fā)明了光學干涉儀并且借助這些儀器進行光譜學和度量學的研究 |
1908年 |
加布里埃爾·李普曼(法國人) |
發(fā)明了彩色照相干涉法(即李普曼干涉定律) |
1909年 |
伽利爾摩·馬可尼(意大利人)、K. F. 布勞恩(德國人) |
開發(fā)了無線電通信,研究發(fā)現理查森定律 |
1910年 |
翰尼斯·迪德里克·范德華(荷蘭人) |
從事氣態(tài)和液態(tài)議程式方面的研究 |
1911年 |
W. 維恩(德國人) |
發(fā)現熱輻射定律 |
1912年 |
N. G. 達倫(瑞典人) |
發(fā)明了可以和燃點航標、浮標氣體蓄電池聯(lián)合使用的自動節(jié)裝置 |
1913年 |
H·卡末林-昂內斯(荷蘭人) |
從事液體氦的超導研究 |
1914年 |
馬克斯·凡·勞厄(德國人) |
發(fā)現晶體中的X射線衍射現象 |
1915年 |
威廉·亨利·布拉格、威廉·勞倫斯·布拉格(英國人) |
借助X射線,對晶體結構進行分析 |
1916年 未頒獎 |
||
1917年 |
C. G. 巴克拉(英國人) |
發(fā)現元素的次級X輻射的特征 |
1918年 |
馬克斯·卡爾·歐內斯特·路德維希·普朗克(德國人) |
對確立量子理論作出巨大貢獻 |
1919年 |
J. 斯塔克(德國人) |
發(fā)現極隧射線的多普勒效應以及電場作用下光譜線的分裂現象 |
1920年 |
C. E. 紀堯姆(瑞士人) |
發(fā)現鎳鋼合金的反?,F象及其在精密物理學中的重要性 |
1921年 |
阿爾伯特·愛因斯坦(美籍猶太人) |
發(fā)現了光電效應定律等 |
1922年 |
尼爾斯·亨利克·大衛(wèi)·玻爾(丹麥人) |
從事原子結構和原子輻射的研究 |
1923年 |
R. A. 米利肯(美國人) |
從事基本電荷和光電效應的研究 |
1924年 |
K. M. G. 西格巴恩(瑞典人) |
發(fā)現了X射線中的光譜線 |
1925年 |
詹姆斯·弗蘭克、G. 赫茲(德國人) |
發(fā)現原子和電子的碰撞規(guī)律 |
1926年 |
J. B. 佩蘭(法國人) |
研究物質不連續(xù)結構和發(fā)現沉積平衡 |
1927年 |
阿瑟·霍利·康普頓(美國人) |
發(fā)現康普頓效應(也稱康普頓散射) |
C. T. R. 威爾遜(英國人) |
發(fā)明了云霧室,能顯示出電子穿過水蒸氣的徑跡 |
|
1928年 |
O. W. 理查森(英國人) |
從事熱離子現象的研究,特別是發(fā)現理查森定律 |
1929年 |
路易斯·維克多·德布羅意(法國人) |
發(fā)現物質波 |
1930年 |
C. V. 拉曼(印度人) |
從事光散方面的研究,發(fā)現拉曼效應 |
1931年 未頒獎 |
||
1932年 |
維爾納·K·海森伯(德國人) |
創(chuàng)建了量子力學 |
1933年 (1934年未頒獎) |
埃爾溫·薛定諤(奧地利人)、P. A. M. 狄拉克(英國人) |
發(fā)現原子理論新的有效形式 |
1935年 |
J. 查德威克(英國人) |
發(fā)現中子 |
1936年 |
V. F. 赫斯(奧地利人) |
發(fā)現宇宙射線 |
C. D. 安德森(美國人) |
發(fā)現正電子 |
|
1937年 |
C. J. 戴維森(美國人)、G. P. 湯姆森(英國人) |
發(fā)現晶體對電子的衍射現象 |
1938年 |
E. 費米(意大利人) |
發(fā)現中子轟擊產生的新放射性元素并發(fā)現用慢中子實現核反應 |
1939年 (1940年~1942年未頒獎) |
E. O. 勞倫斯(美國人) |
發(fā)明和發(fā)展了回旋加速器并以此取得了有關人工放射性等成果 |
1943年 |
O. 斯特恩(美國人) |
開發(fā)了分子束方法以及質子磁矩的測量 |
1944年 |
I. I. 拉比(美國人) |
發(fā)明了著名氣核磁共振法 |
1945年 |
沃爾夫岡·E·泡利(奧地利人) |
發(fā)現不相容原理 |
1946年 |
P. W. 布里奇曼(美國人) |
發(fā)明了超高壓裝置,并在高壓物理學方面取得成就 |
1947年 |
E. V. 阿普爾頓(英國人) |
證實了電離層的存在 |
1948年 |
P. M. S. 布萊克特(英國人) |
改進了威爾遜云霧室方法,并由此導致系列發(fā)現 |
1949年 |
湯川秀樹(日本人) |
提出核子的介子理論,并預言介子的存在 |
1950年 |
C. F. 鮑威爾(英國人) |
開發(fā)了用以研究核破壞過程的照相乳膠記錄法并發(fā)現各種介子 |
1951年 |
J. D. 科克羅夫特(英國人)、E. T. S. 沃爾頓(愛爾蘭人) |
通過人工加速的粒子轟擊原子,促使其產生核反應(嬗變) |
1952年 |
F. 布洛赫、E. M. 珀塞爾(美國人) |
從事物質核磁共振現象的研究并創(chuàng)立原子核磁力測量法 |
1953年 |
F. 澤爾尼克(荷蘭人) |
發(fā)明了相襯顯微鏡 |
1954年 |
馬克斯·玻恩 |
在量子力學和波函數的統(tǒng)計解釋及研究方面作出貢獻 |
W. 博特(德國人) |
發(fā)明了符合計數法,用以研究原子核反應和γ射線 |
|
1955年 |
W. E. 拉姆(美國人) |
發(fā)明了微波技術,進而研究氫原子的精細結構 |
P. 庫什(美國人) |
用射頻束技術精確地測定出電子磁矩,創(chuàng)新了核理論 |
|
1956年 |
W. H. 布拉頓、J. 巴丁、W. B. 肖克利(美國人) |
從事半導體研究并發(fā)現了晶體管效應 |
1957年 |
李政道、楊振寧(美籍華人) |
對宇稱定律作了深入研究 |
1958年 |
P. A. 切倫科夫、I. E. 塔姆、I. M. 弗蘭克(俄國人) |
發(fā)現并解釋了切倫科夫效應 |
1959年 |
E .G. 塞格雷、O. 張伯倫(美國人) |
發(fā)現反質子 |
1960年 |
D. A. 格拉塞(美國人) |
發(fā)明氣泡室,取代了威爾遜的云霧室 |
1961年 |
R. 霍夫斯塔特(美國人) |
利用直線加速器從事高能電子散射研究并發(fā)現核子 |
R. L. 穆斯保爾(德國人) |
從事γ射線的共振吸收現象研究并發(fā)現了穆斯保爾效應 |
|
1962年 |
列夫·達維多維奇·朗道(俄國人) |
開創(chuàng)了凝集態(tài)物質特別是液氦理論 |
1963年 |
E. P. 威格納(美國人) |
發(fā)現基本粒子的對稱性以及原子核中支配質子與中子相互作用的原理 |
M. G. 邁耶(美國人)、J. H. D. 延森(德國人) |
從事原子核殼層模型理論的研究 |
|
1964年 |
C. H. 湯斯(美國人)、N. G. 巴索夫、A. M. 普羅霍羅夫(俄國人) |
發(fā)明微波射器和激光器,并從事量子電子學方面的基礎研究 |
1965年 |
朝永振一郎(日本)、J. S. 施溫格、R.P.費曼(美國人) |
在量子電動力學方面進行對基本粒子物理學具有深刻影響的基礎研究 |
1966年 |
A. 卡斯特勒(法國人) |
發(fā)現和開發(fā)了把光的共振和磁的共振合起來,使光束與射頻電磁發(fā)生雙共振的雙共振法 |
1967年 |
H. A. 貝蒂(美國人) |
以核反應理論作出貢獻,特別是發(fā)現了星球中的能源 |
1968年 |
L. W. 阿爾瓦雷斯(美國人) |
通過發(fā)展液態(tài)氫氣泡和數據分析技術,從而發(fā)現許多共振態(tài) |
1969年 |
M. 蓋爾曼(美國人) |
發(fā)現基本粒子的分類和相互作用 |
1970年 |
L. 內爾(法國人) |
從事鐵磁和反鐵磁方面的研究 |
H. 阿爾文(瑞典人) |
從事磁流體力學方面的基礎研究 |
|
1971年 |
D. 加博爾(英國人) |
發(fā)明并發(fā)展了全息攝影法 |
1972年 |
J. 巴丁、L. N. 庫柏、J. R. 施里弗(美國人) |
從理論上解釋了超導現象 |
1973年 |
江崎玲于奈(日本人)、I. 賈埃弗(美國人) |
通過實驗發(fā)現半導體中的“隧道效應”和超導物質 |
B. D. 約瑟夫森(英國人) |
發(fā)現超導電流通過隧道阻擋層的約瑟夫森效應 |
|
1974年 |
M. 賴爾、A. 赫威斯(英國人) |
從事射電天文學方面的開拓性研究 |
1975年 |
A. N. 玻爾、B. R. 莫特爾森(丹麥人)、J. 雷恩沃特(美國人) |
從事原子核內部結構方面的研究 |
1976年 |
B. 里克特(美國人)、丁肇中(美籍華人) |
發(fā)現很重的中性介子 —— J/φ粒子 |
1977年 |
P. W. 安德林、J. H. 范弗萊克(美國人)、N. F. 莫特(英國人) |
從事磁性和無序系統(tǒng)電子結構的基礎研究 |
1978年 |
P. 卡爾察(俄國人) |
從事低溫學方面的研究 |
A. A. 彭齊亞斯、R. W. 威爾遜(美國人) |
發(fā)現宇宙微波背景輻射 |
|
1979年 |
謝爾登·李·格拉肖、史蒂文·溫伯格(美國人)、A. 薩拉姆(巴基斯坦) |
預言存在弱中性流,并對基本粒子之間的弱作用和電磁作用的統(tǒng)一理論作出貢獻 |
1980年 |
J. W. 克羅寧、V. L. 菲奇(美國人) |
發(fā)現中性K介子衰變中的宇稱(CP)不守恒 |
1981年 |
K. M. 西格巴恩(瑞典人) |
開發(fā)出高分辨率測量儀器 |
N. 布洛姆伯根、A. 肖洛(美國人) |
對發(fā)展激光光譜學和高分辨率電子光譜做出貢獻 |
|
1982年 |
K. G. 威爾遜(美國人) |
提出與相變有關的臨界現象理論 |
1983年 |
S. 昌德拉塞卡、W. A. 福勒(美國人) |
從事星體進化的物理過程的研究 |
1984年 |
C. 魯比亞(意大利人)、S. 范德梅爾(荷蘭人) |
對導致發(fā)現弱相互作用的傳遞者場粒子W±和Z_0的大型工程作出了決定性貢獻 |
1985年 |
K·馮·克里津(德國人) |
發(fā)現量了霍耳效應并開發(fā)了測定物理常數的技術 |
1986年 |
E. 魯斯卡(德國人) |
在電光學領域做了大量基礎研究,開發(fā)了第一架電子顯微鏡 |
G. 比尼格(德國人)、H. 羅雷爾(瑞士人) |
設計并研制了新型電子顯微鏡——掃描隧道顯微鏡 |
|
1987年 |
J. G. 貝德諾爾斯(德國人)、K. A. 米勒(瑞士人) |
發(fā)現氧化物高溫超導體 |
1988年 |
L. 萊德曼、M. 施瓦茨、J. 斯坦伯格(美國人) |
發(fā)現μ子型中微子,從而揭示了輕子的內部結構 |
1989年 |
W. 保羅(德國人)、H. G. 德默爾特、N. F. 拉姆齊(美國人) |
創(chuàng)造了世界上最準確的時間計測方法——原子鐘,為物理學測量作出杰出貢獻 |
1990年 |
J. I. 弗里德曼、H. W. 肯德爾(美國人)、理查德·E·泰勒(加拿大人) |
通過實驗首次證明了夸克的存在 |
1991年 |
皮埃爾-吉勒·德·熱納(法國人) |
從事對液晶、聚合物的理論研究 |
時間 |
人物 |
得獎原因 |
---|---|---|
1992年 |
G. 夏帕克(法國人) |
開發(fā)了多絲正比計數管 |
1993年 |
R. A. 赫爾斯、J. H. 泰勒(美國人) |
發(fā)現一對脈沖雙星,為有關引力的研究提供了新的機會 |
1994年 |
B. N. 布羅克豪斯(加拿大人)、C. G. 沙爾(美國人) |
在凝聚態(tài)物質的研究中發(fā)展了中子散射技術 |
1995年 |
M. L. 佩爾、F. 萊因斯(美國人) |
發(fā)現了自然界中的亞原子粒子:Υ輕子、中微子 |
1996年 |
D. M. 李(美國人)、D. D. 奧謝羅夫(美國人)、理查德·C·理查森(美國人) |
發(fā)現在低溫狀態(tài)下可以無摩擦流動的氦- 3 |
1997年 |
朱棣文(美籍華人)、W. D. 菲利普斯(美國人)、C. 科昂-塔努吉(法國人) |
發(fā)明了用激光冷卻和俘獲原子的方法 |
1998年 |
勞克林(美國)、斯特默(美國)、崔琦(美籍華人) |
發(fā)現了分數量子霍爾效應 |
1999年 |
H. 霍夫特(荷蘭)、M. 韋爾特曼(荷蘭) |
闡明了物理中電鍍弱交互作用的定量結構。 |
2000年 |
阿爾費羅夫(俄羅斯人)、基爾比(美國人)、克雷默(美國人) |
因其研究具有開拓性,奠定資訊技術的基礎,諾貝爾物理獎。 |
2001年 |
克特勒(德國)、康奈爾(美國)和維曼(美國) |
在“堿性原子稀薄氣體的玻色-愛因斯坦凝聚態(tài)”以及“凝聚態(tài)物質性質早期基礎性研究”方面取得成就。 |
2002年 |
雷蒙德·戴維斯(美)、小柴昌俊(日)、里卡爾多·賈科尼(美) |
在天體物理學領域做出的先驅性貢獻,打開了人類觀測宇宙的兩個新“窗口”。 |
2003年 |
阿列克謝·阿布里科索夫(美俄雙重國籍)、維塔利·金茨堡(俄)、安東尼·萊格特(英美雙重國籍) |
在超導體和超流體理論上作出的開創(chuàng)性貢獻。 |
2004年 |
戴維·格羅斯、戴維·波利澤、弗蘭克·維爾澤克(均為美國人) |
這三位科學家對夸克的研究使科學更接近于實現它為“所有的事情構建理論”的夢想。 |
2005年 |
美國科羅拉多大學的約翰·L·霍爾、哈佛大學的羅伊·J·格勞貝爾,以及德國路德維?!ゑR克西米利安大學的特奧多爾·亨施 |
研究成果可改進GPS技術 |
2006年 |
約翰·馬瑟、喬治·斯穆特(均為美國人) |
發(fā)現了黑體形態(tài)和宇宙微波背景輻射的擾動現象 |
2007年 |
阿爾貝·費爾(法)、彼得·格林貝格爾(德) |
先后獨立發(fā)現了“巨磁電阻”效應。這項技術被認為是“前途廣闊的納米技術領域的首批實際應用之一”。 |
2008年 |
小林誠、益川敏、南部陽一郎(日) |
發(fā)現了次原子物理的對稱性自發(fā)破缺機制 |
2009年 |
英國籍華裔物理學家高錕 |
“在光學通信領域中光的傳輸的開創(chuàng)性成就” |
美國物理學家韋拉德·博伊爾(Willard S. Boyle)和喬治·史密斯(George E. Smith) |
“發(fā)明了成像半導體電路——電荷藕合器件圖像傳感器CCD” |
|
2010年 |
英國曼徹斯特大學科學家安德烈·蓋姆(俄)與康斯坦丁·諾沃肖洛夫(俄) |
在二維空間材料石墨烯的突破性實驗 |
2011年 |
美國加州大學伯克利分校天體物理學家薩爾·波爾馬特、美國/澳大利亞布萊恩·施密特以及美國科學家亞當·里斯 |
因發(fā)現宇宙加速膨脹最終能夠可能變成冰 |
2012年 |
法國科學家沙吉·哈羅徹(Serge Haroche) 與美國科學家大衛(wèi)·溫蘭德(David J. Winland) |
實現對單個量子系統(tǒng)的操作和測量而不改變其量子力學屬性 |
物理學是人們對自然界中物質的運動和轉變的知識做出規(guī)律性的總結,這種運動和轉變應有兩種。一是早期人們通過感官視覺的延伸;二是近代人們通過發(fā)明創(chuàng)造供觀察測量用的科學儀器,實驗得出的結果,間接認識物質內部組成建立在的基礎上。物理學從研究角度及觀點不同,可大致分為微觀與宏觀兩部分:宏觀物理學不分析微粒群中的單個作用效果而直接考慮整體效果,是最早期就已經出現的;微觀物理學的誕生,起源于宏觀物理學無法很好地解釋黑體輻射、光電效應、原子光譜等新的實驗現象。它是宏觀物理學的一個修正,并隨著實驗技術與理論物理的發(fā)展而逐漸完善。
其次,物理又是一種智能。
誠如諾貝爾物理學獎得主、德國科學家玻恩所言:“如其說是因為我發(fā)表的工作里包含了一個自然現象的發(fā)現,倒不如說是因為那里包含了一個關于自然現象的科學思想方法基礎?!蔽锢韺W之所以被人們公認為一門重要的科學,不僅僅在于它對客觀世界的規(guī)律作出了深刻的揭示,還因為它在發(fā)展、成長的過程中,形成了一整套獨特而卓有成效的思想方法體系。正因為如此,使得物理學當之無愧地成了人類智能的結晶,文明的瑰寶。
大量事實表明,物理思想與方法不僅對物理學本身有價值,而且對整個自然科學,乃至社會科學的發(fā)展都有著重要的貢獻。有人統(tǒng)計過,自20世紀中葉以來,在諾貝爾化學獎、生物及醫(yī)學獎,甚至經濟學獎的獲獎者中,有一半以上的人具有物理學的背景——這意味著他們從物理學中汲取了智能,轉而在非物理領域里獲得了成功。反過來,卻從未發(fā)現有非物理專業(yè)出身的科學家問鼎諾貝爾物理學獎的事例。這就是物理智能的力量。難怪國外有專家十分尖銳地指出:沒有物理修養(yǎng)的民族是愚蠢的民族!
總之,物理學是對自然界概括規(guī)律性的總結,是概括經驗科學性的理論認識。
1. 真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規(guī)律。
2. 和諧統(tǒng)一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多么的和諧有序。物理學上的幾次大統(tǒng)一,也顯示出美的感覺。牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統(tǒng)一了。麥克斯韋電磁理論的建立,又使電和磁實現了統(tǒng)一。愛因斯坦質能方程又把質量和能量建立了統(tǒng)一。光的波粒二象性理論把粒子性、波動性實現了統(tǒng)一。愛因斯坦的相對論又把時間、空間統(tǒng)一了。
3. 簡潔性:物理規(guī)律的數學語言,體現了物理的簡潔特性。例如:牛頓第二定律、愛因斯坦的質能方程、法拉第電磁感應定律。
4. 對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發(fā)展變化或客觀規(guī)律的對稱性。例如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5. 預測性:正確的物理理論,不僅能解釋當時已發(fā)現的物理現象,更能預測當時無法探測到的物理現象。例如:麥克斯韋電磁理論預測電磁波存在、盧瑟福預言中子的存在、菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑、狄拉克預言電子的存在。
6. 精巧性:物理實驗具有精巧性。設計方法的巧妙,使得物理現象更加明顯。
●牛頓力學(Newtonian mechanics)與分析力學(analytical mechanics)研究物體機械運動的基本規(guī)律及關于時空相對性的規(guī)律。
●電磁學(electromagnetism)與電動力學(electrodynamics)研究電磁現象、物質的電磁運動規(guī)律及電磁輻射等規(guī)律。
●熱力學(thermodynamics)與統(tǒng)計力學(statistical mechanics)研究物質熱運動的統(tǒng)計規(guī)律及其宏觀表現。
●狹義相對論(special relativity)研究物體的高速運動效應以及相關的動力學規(guī)律。
●廣義相對論(general relativity)研究在大質量物體附近,物體在強引力場下的動力學行為。
●量子力學(quantum mechanics)研究微觀物質的運動現象以及基本運動規(guī)律。
此外,還有:
粒子物理學、原子核物理學、原子與分子物理學、固體物理學、凝聚態(tài)物理學、激光物理學、等離子體物理學、地球物理學、生物物理學、天體物理學等。
物理學的方法和科學態(tài)度:提出命題 → 理論解釋 → 理論預言 → 實驗驗證 → 修改理論。
現代物理學是一門理論和實驗高度結合的精確科學,它的產生過程如下:
物理命題一般是從新的觀測事實或實驗事實中提煉出來,或從已有原理中推演出來;
首先嘗試用已知理論對命題作解釋、邏輯推理和數學演算。如現有理論不能完美解釋,需修改原有模型或提出全新的理論模型;
新理論模型必須提出預言,并且預言能夠為實驗所證實;
一切物理理論最終都要以觀測或實驗事實為準則,當一個理論與實驗事實不符時,它就面臨著被修改或被推翻。
● 怎樣學習物理學?
著名物理學家費曼說:“科學是一種方法。它教導人們:一些事物是怎樣被了解的,什么事情是已知的,了解到了什么程度,如何對待疑問和不確定性,證據服從什么法則;如何思考事物,做出判斷,如何區(qū)別真?zhèn)魏捅砻娆F象?”著名物理學家愛因斯坦說:“發(fā)展獨立思考和獨立判斷的一般能力,應當始終放在首位,而不應當把專業(yè)知識放在首位。如果一個人掌握了他的學科的基礎理論,并且學會了獨立思考和工作,他必定會找到自己的道路,而且比起那種主要以獲得細節(jié)知識為其培訓內容的人來,他一定會更好地適應進步和變化?!?
● 學習的觀點:從整體上邏輯地、協(xié)調地學習物理學,了解物理學中各個分支之間的相互聯(lián)系。
● 物理學的本質:物理學并不研究自然界現象的終極機制(或者根本不能研究),我們只能在某些現象中感受自然界的規(guī)則,并試圖以這些規(guī)則來解釋自然界所發(fā)生任何的事情。我們有限的智力總試圖在理解自然,并試圖改變自然,這是物理學,甚至是所有自然科學共同追求的目標。
以物理學為基礎的相關科學有:化學、材料科學、天文學、自然地理學等。
格式:pdf
大?。?span id="ptlhhbf" class="single-tag-height">712KB
頁數: 3頁
評分: 4.7
一、學習《建筑物理》的心得體會 這學期我們接觸并學習了建筑物理熱工學和光學兩個部分, 學習 的過程困難重重, 當然也少不了累累收獲。 下面將從幾個方面談談我 的學習心得。 1、對“建筑物理”從感性認識到理性認識的提升。感性認識是理 性認識的基礎。 通過宏觀,細觀幾個層次全面建立對建筑物理的感性 認識,讓我對它進入到理性認識的思考。比方說, 我們只知道建筑要 有窗戶,至于為什么要有、要有怎樣的大小規(guī)格、 與筑有什么樣的比 例關系最合適等等這些都是從未考慮過的。從來都是通過所謂的“感 覺”結合模數來開窗。等到接觸學習了建筑物理,才明白窗戶的任務 除了美化建筑之外主要在于采光通風, 提高建筑功能質量, 創(chuàng)造適宜 的生活和工作環(huán)境 。適當數量、大小、方向的窗戶對于一座建筑來說 是十分重要的。經過不斷學習總結讓我深刻懂得建筑物理是研究聲、 光、熱的物理現象和運動規(guī)律的一門科學。 2、建筑物理對建筑設
一個導體的介電常數
也是德國物理學家普朗克能量量子化假說中的最小能量值ε(叫能量子)。
靜力學中表示線應變。
集合符號∈由ε演變。
對數之基數
階越函數
絕緣,物理學名詞,指使用不導電的物質將帶電體隔離或包裹起來,以對觸電起保護作用的一種安全措施。良好的絕緣對于保證電氣設備與線路的安全運行,防止人身觸電事故的發(fā)生是最基本的和最可靠的手段。絕緣通常可分為氣體絕緣、液體絕緣和固體絕緣三類。在實際應用中,固體絕緣仍是最為廣泛使用,且最為可靠的一種絕緣物質。
有強電作用下,絕緣物質可能被擊穿而喪失其絕緣性能。在上述三種絕緣物質中,氣體絕緣物質被擊穿后,一旦去掉外界因素(強電場)后即可自行恢復其固有的電氣絕緣性能;而固體絕緣物質被擊穿以后,則不可逆地完全喪失了其電氣絕緣性能。因此,電氣線路與設備的絕緣選擇必須與電壓等級相配合,而且須與使用環(huán)境及運行條件相適應,以保證絕緣的安全作用。
此外,由于腐蝕性氣體、蒸氣、潮氣、導電性粉塵以及機械操作等原因,均可能使絕緣物質的絕緣性能降低甚至破壞。而且,日光、風雨等環(huán)境因素的長期作用,也可以使絕緣物質老化而逐漸失去其絕緣性能。
各種線路與設備在不同條件下所應具備的絕緣電阻大致如下:
一般情況下,新裝或大修后的低壓不應低于100MΩ;運行中的低壓線路與設備,其絕緣電阻不應低于3MΩ/V;在潮濕場合下的設備與線路,其絕緣電阻不應低于2.5MΩ/V;控制線中的絕緣電阻一般不應低于1MΩ,而高壓線路與設備的絕緣電阻一般不應低于1000MΩ。2100433B
粒子物理學是研究組成物質和射線的基本粒子以及它們之間相互作用的一個物理學分支。由于許多基本粒子在大自然的一般條件下不存在或不單獨出現,物理學家只有使用粒子加速器在高能相撞的條件下才能生產和研究它們,因此粒子物理學也被稱為高能物理學。