阻抗從字面上看就與電阻不一樣,其中只有一個(gè)阻字是相同的,而另一個(gè)抗字呢?簡單地說,阻抗就是電阻加電抗,所以才叫阻抗;通俗一點(diǎn)地說,阻抗就是電阻、電容抗及電感抗在向量上的和。在直流電的世界中,物體對電流阻礙的作用叫做電阻,世界上所有的物質(zhì)都有電阻,只是電阻值的大小差異而已。電阻小的物質(zhì)稱作良導(dǎo)體,電阻很大的物質(zhì)稱作非導(dǎo)體,而最近在高科技領(lǐng)域中稱的超導(dǎo)體,則是一種電阻值幾近于零的東西。但是在交流電的領(lǐng)域中則除了電阻會阻礙電流以外,電容及電感也會阻礙電流的流動,這種作用就稱之為電抗,意即抵抗電流的作用。電容及電感的電抗分別稱作電容抗及電感抗,簡稱容抗及感抗。它們的計(jì)量單位與電阻一樣是歐姆,而其值的大小則和交流電的頻率有關(guān)系,頻率愈高則容抗愈小感抗愈大,頻率愈低則容抗愈大而感抗愈小。此外電容抗和電感抗還有相位角度的問題,具有向量上的關(guān)系式,因此才會說:阻抗是電阻與電抗在向量上的和。
高頻電路的阻抗匹配由于高頻功率放大器工作于非線性狀態(tài),所以線性電路和阻抗匹配(即:負(fù)載阻抗與電源內(nèi)阻相等)這一概念不能適用于它。因?yàn)樵诜蔷€性(如:丙類)工作的時(shí)候,電子器件的內(nèi)阻變動劇烈:通流的時(shí)候,內(nèi)阻很小;截止的時(shí)候,內(nèi)阻接近無窮大。因此輸出電阻不是常數(shù)。所以所謂匹配的時(shí)候內(nèi)阻等于外阻,也就失去了意義。因此,高頻功率放大的阻抗匹配概念是:在給定的電路條件下,改變負(fù)載回路的可調(diào)元件,使電子器件送出額定的輸出功率至負(fù)載。這就叫做達(dá)到了匹配狀態(tài)。
阻抗匹配是指信號源或者傳輸線跟負(fù)載之間的一種合適的搭配方式。
阻抗匹配分為低頻和高頻兩種情況討論。我們先從直流電壓源驅(qū)動一個(gè)負(fù)載入手。由于實(shí)際的電壓源,總是有內(nèi)阻的,我們可以把一個(gè)實(shí)際電壓源,等效成一個(gè)理想的電壓源跟一個(gè)電阻r串聯(lián)的模型。假設(shè)負(fù)載電阻為R,電源電動勢為U,內(nèi)阻為r,那么我們可以計(jì)算出流過電阻R的電流為:I=U/(R+r),可以看出,負(fù)載電阻R越小,則輸出電流越大。
負(fù)載R上的電壓為:Uo=IR=U/[1+(r/R)],可以看出,負(fù)載電阻R越大,則輸出電壓Uo越高。
再來計(jì)算一下電阻R消耗的功率為: P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r}
對于一個(gè)給定的信號源,其內(nèi)阻r是固定的,而負(fù)載電阻R則是由我們來選擇的。注意式中[(R-r)*(R-r)/R],當(dāng)R=r時(shí),[(R-r)*(R-r)/R]可取得最小值0,這時(shí)負(fù)載電阻R上可獲得最大輸出功率Pmax=U*U/(4*r)。即,當(dāng)負(fù)載電阻跟信號源內(nèi)阻相等時(shí),負(fù)載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。
對于純電阻電路,此結(jié)論同樣適用于低頻電路及高頻電路。當(dāng)交流電路中含有容性或感性阻抗時(shí),結(jié)論有所改變,就是需要信號源與負(fù)載阻抗的的實(shí)部相等,虛部互為相反數(shù),這叫做共軛匹配。
在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負(fù)載之間的情況,因?yàn)榈皖l信號的波長相對于傳輸線來說很長,傳輸線可以看成是"短線",反射可以不考慮(可以這么理解:因?yàn)榫€短,即使反射回來,跟原信號還是一樣的)。
從以上分析我們可以得出結(jié)論:如果我們需要輸出電流大,則選擇小的負(fù)載R;如果我們需要輸出電壓大,則選擇大的負(fù)載R;如果我們需要輸出功率最大,則選擇跟信號源內(nèi)阻匹配的電阻R。
有時(shí)阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負(fù)載條件下設(shè)計(jì)的,如果負(fù)載條件改變了,則可能達(dá)不到原來的性能,這時(shí)我們也會叫做阻抗失配。
在高頻電路中,我們還必須考慮反射的問題。當(dāng)信號的頻率很高時(shí),則信號的波長就很短,當(dāng)波長短得跟傳輸線長度可以比擬時(shí),反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特征阻抗跟負(fù)載阻抗不匹配(相等)時(shí),在負(fù)載端就會產(chǎn)生反射。為什么阻抗不匹配時(shí)會產(chǎn)生反射以及特征阻抗的求解方法,牽涉到二階偏微分方程的求解,在這里我們不細(xì)說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。
大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調(diào)整傳輸線的波長(transmission line matching)。
要匹配一組線路,首先把負(fù)載點(diǎn)的阻抗值,除以傳輸線的特性阻抗值來歸一化,然后把數(shù)值劃在史密夫圖表上。
1. 改變阻抗力
把電容或電感與負(fù)載串聯(lián)起來,即可增加或減少負(fù)載的阻抗值,在圖表上的點(diǎn)會沿著代表實(shí)數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點(diǎn)會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重復(fù)以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?/p>
2. 調(diào)整傳輸線
由負(fù)載點(diǎn)至來源點(diǎn)加長傳輸線,在圖表上的圓點(diǎn)會沿著圖中心以逆時(shí)針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調(diào)整為零,完成匹配。
阻抗匹配則傳輸功率大,對于一個(gè)直流電源來講,阻抗匹配時(shí)輸出效率只有50%。并且電源以對外輸出最大功率為目標(biāo),不適用阻抗匹配的條件。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠(yuǎn)遠(yuǎn)大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時(shí),要求負(fù)載阻抗要和傳輸線的特征阻抗相等,此時(shí)的傳輸不會產(chǎn)生反射,這表明所有能量都被負(fù)載吸收了。反之則在傳輸中有能量損失。高速PCB布線時(shí),為了防止信號的反射,要求是線路的阻抗為50歐姆。這是個(gè)大約的數(shù)字,一般規(guī)定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則為 100歐姆,只是取個(gè)整而已,為了匹配方便。
在信號源給定的情況下,輸出功率取決于負(fù)載電阻與信號源內(nèi)阻之比K,當(dāng)兩者相等,即K=1時(shí),輸出功率最大。阻抗匹配的概念可以推廣到交流電路,當(dāng)負(fù)載阻抗與信號源阻抗共軛時(shí),能夠?qū)崿F(xiàn)功率的最大傳輸,如果負(fù)載阻抗不滿足共軛匹配的條件,就要在負(fù)載和信號源之間加一個(gè)阻抗變換網(wǎng)絡(luò),將負(fù)載阻抗變換為信號源阻抗的共軛,實(shí)現(xiàn)阻抗匹配。
信號傳輸過程中負(fù)載阻抗和信源內(nèi)阻抗之間的特定配合關(guān)系。一件器材的輸出阻抗和所連接的負(fù)載阻抗之間所應(yīng)滿足的某種關(guān)系,以免接上負(fù)載后對器材本身的工作狀態(tài)產(chǎn)生明顯的影響。對電子設(shè)備互連來說,例如信號源連放大...
j表示矢量。阻抗等于電阻、感抗、容抗三者的矢量和。感抗、容抗方向相反,說以兩者矢量和的模就是兩個(gè)量模的差,公式中表達(dá)為j ( XL–XC)。
阻抗公式:Z= R+j ( XL–XC)。阻抗Z= R+j ( XL –XC) 。其中R為電阻,XL為感抗,XC為容抗。如果( XL–XC) > 0,稱為“感性負(fù)載”;反之,如果( XL –XC...
①負(fù)載阻抗等于信源內(nèi)阻抗,即它們的模與輻角分別相等,這時(shí)在負(fù)載阻抗上可以得到無失真的電壓傳輸。
②負(fù)載阻抗等于信源內(nèi)阻抗的共軛值,即它們的模相等而輻角之和為零。這時(shí)在負(fù)載阻抗上可以得到最大功率。這種匹配條件稱為共軛匹配。如果信源內(nèi)阻抗和負(fù)載阻抗均為純阻性,則兩種匹配條件是等同的。
阻抗匹配是指負(fù)載阻抗與激勵(lì)源內(nèi)部阻抗互相適配,得到最大功率輸出的一種工作狀態(tài)。對于不同特性的電路,匹配條件是不一樣的。在純電阻電路中,當(dāng)負(fù)載電阻等于激勵(lì)源內(nèi)阻時(shí),則輸出功率為最大,這種工作狀態(tài)稱為匹配,否則稱為失配。
當(dāng)激勵(lì)源內(nèi)阻抗和負(fù)載阻抗含有電抗成份時(shí),為使負(fù)載得到最大功率,負(fù)載阻抗與內(nèi)阻必須滿足共軛關(guān)系,即電阻成份相等,電抗成份絕對值相等而符號相反。這種匹配條件稱為共軛匹配。
阻抗匹配(Impedance matching)是微波電子學(xué)里的一部分,主要用于傳輸線上,來達(dá)到所有高頻的微波信號皆能傳至負(fù)載點(diǎn)的目的,不會有信號反射回來源點(diǎn),從而提升能源效益。史密夫圖表上。電容或電感與負(fù)載串聯(lián)起來,即可增加或減少負(fù)載的阻抗值,在圖表上的點(diǎn)會沿著代表實(shí)數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點(diǎn)會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?/p>
阻抗匹配概述
信號傳輸過程中負(fù)載阻抗和信源內(nèi)阻抗之間的特定配合關(guān)系。一件器材的輸出阻抗和所連接的負(fù)載阻抗之間所應(yīng)滿足的某種關(guān)系,以免接上負(fù)載后對器材本身的工作狀態(tài)產(chǎn)生明顯的影響。對電子設(shè)備互連來說,例如信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認(rèn)為阻抗匹配良好;對于放大器連接音箱來說,電子管機(jī)應(yīng)選用與其輸出端標(biāo)稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。
輸入端阻抗匹配時(shí),傳輸線獲得最大功率;在輸出端阻抗匹配的情況下,傳輸線上只有向終端行進(jìn)的電壓波和電流波,攜帶的能量全部為負(fù)載所吸收。
在阻抗失配的情況下,傳輸線上將同時(shí)存在-射波和應(yīng)射波。
從傳輸?shù)慕嵌葋碚f,總是竭力避免阻抗失配現(xiàn)象的出現(xiàn),因?yàn)榉瓷洳ǖ某霈F(xiàn),意味著遞送到傳輸線終端的功率不能全部為負(fù)載所吸收,降低了傳輸效率;在輸送功率較高的情況下,電壓或電流的波腹有可能損壞傳輸線的介質(zhì);而且傳輸線始端的輸入阻抗隨頻率而變化,輸送多頻信號時(shí),將因機(jī)、線阻抗難于匹配而出現(xiàn)失真。
阻抗匹配的程度常用電壓反射系數(shù)來衡量。
格式:pdf
大?。?span id="4pghmn1" class="single-tag-height">10KB
頁數(shù): 1頁
評分: 4.5
同軸電纜 SPD的阻抗匹配 摘要: 同軸電纜 SPD的選型,需要考慮的參數(shù)有很多,例如接口、工作電 壓、插入損耗等,但阻抗匹配這一重要參數(shù)很容易被忽視, 該參數(shù)恰恰也決定著 SPD 安裝后對原線路的影響。本文主要就同軸電纜 SPD(避雷器)阻抗匹配問 題進(jìn)行討論。 關(guān)鍵詞: 同軸電纜;阻抗匹配; SPD 0引言 同軸電纜通常也被稱做細(xì)纜, 在 10Base2網(wǎng)絡(luò)中是主要的信號傳輸介質(zhì), 但 隨著 10/100BaseT網(wǎng)絡(luò)的普及,雙絞線已逐漸取代了細(xì)纜的位置,成為了現(xiàn)在局 域網(wǎng)絡(luò)的主要傳輸介質(zhì)。 在網(wǎng)絡(luò)中,同軸電纜雖被雙絞線取代, 但它并沒有退出通信系統(tǒng)的舞臺。 在 現(xiàn)代網(wǎng)絡(luò)中同軸電纜主要作為 E1線路(廣域網(wǎng)常用專線)的接入介質(zhì),因此在 視頻傳輸中得到廣泛的應(yīng)用。 同軸電纜抗干擾能力很弱, 尤其是雷電磁脈沖對其 影響很大,很容易產(chǎn)生雷電過電壓而損壞連接的設(shè)備,但可以通過安裝 BNC 接
格式:pdf
大?。?span id="qr1uxuz" class="single-tag-height">10KB
頁數(shù): 2頁
評分: 4.3
同軸電纜SPD的選型,需要考慮的參數(shù)有很多,例如接口、工作電壓、插入損耗等,但阻抗匹配這一重要參數(shù)很容易被忽視,該參數(shù)恰恰也決定著SPD安裝后對原線路的影響。本文主要就同軸電纜SPD(避雷器)阻抗匹配問題進(jìn)行討論。
在線路板中,若有信號傳送時(shí),希望由電源的發(fā)出端起,在能量損失最小的情形下,能順利的傳送到接受端,而且接受端將其完全吸收而不作任何反射。要達(dá)到這種傳輸,線路中的阻抗必須和發(fā)出端內(nèi)部的阻抗相等才行稱為"阻抗匹配"。在設(shè)計(jì)高速PCB電路時(shí),阻抗匹配是設(shè)計(jì)的要素之一。而阻抗值與走線方式有絕對的關(guān)系。例如,是走在表面層(Microstrip)還是內(nèi)層(Stripline/Double Stripline)、與參考的電源層或地層的距離、走線寬度、PCB材質(zhì)等均會影響走線的特性阻抗值。也就是說,要在布線后才能確定阻抗值,同時(shí)不同PCB生產(chǎn)廠家生產(chǎn)出來的特性阻抗也有微小的差別。一般仿真軟件會因線路模型或所使用的數(shù)學(xué)算法的限制而無法考慮到一些阻抗不連續(xù)的布線情況,這時(shí)候在原理圖上只能預(yù)留一些端接(Temninators),如串聯(lián)電阻等,來緩和走線阻抗不連續(xù)的效應(yīng)。真正根本解決問題的方法還是布線時(shí)盡量注意避免阻抗不連續(xù)的發(fā)生。
定義:
特性阻抗的定義:在某一頻率下,電子器件傳輸信號線中,相對某一參考層,其高頻信號或電磁波在傳播過程中所受的阻力稱之為特性阻抗,它是電阻抗,電感抗,電容抗……的一個(gè)矢量總和。
特性阻抗的分類:
目前常見的特性阻抗分為:單端(線)阻抗、差分(動)阻抗、共面阻抗等。
單端(線)阻抗:英文single ended impedance ,指單根信號線測得的阻抗 。
差分(動)阻抗:英文differential impedance,指差分驅(qū)動時(shí)在兩條等寬等間距的傳輸線中測試到的阻抗。
共面阻抗:英文coplanar impedance ,指信號線在其周圍GND/VCC(信號線到其兩側(cè)GND/VCC間距相等)之間傳輸時(shí)所測試到的阻抗。
阻抗控制需求的決定條件:當(dāng)信號在PCB導(dǎo)線中傳輸時(shí),若導(dǎo)線的長度接近信號波長的1/7,此時(shí)的導(dǎo)線便成為信號傳輸線,一般信號傳輸線均需做阻抗控制。PCB制作時(shí),依客戶要求決定是否需管控阻抗,若客戶要求某一線寬需做阻抗控制,生產(chǎn)時(shí)則需管控該線寬的阻抗。
阻抗匹配的三個(gè)要素:輸出阻抗(原始主動零件) 特性阻抗(信號線) 輸入阻抗(被動零件)(PCB板)
阻抗匹配
當(dāng)信號在PCB上傳輸時(shí),PCB板的特性阻抗必須與頭尾元件的電子阻抗相匹配,一旦阻抗值超出公差,所傳出的信號能量將出現(xiàn)反射、散射、衰減或延誤等現(xiàn)象,從而導(dǎo)致信號不完整,信號失真。
電子行業(yè)的工程師經(jīng)常會遇到阻抗匹配問題。什么是阻抗匹配,為什么要進(jìn)行阻抗匹配?本文帶您一探究竟!
一、什么是阻抗
在電學(xué)中,常把對電路中電流所起的阻礙作用叫做阻抗。阻抗單位為歐姆,常用Z表示,是一個(gè)復(fù)數(shù)Z= R+i( ωL–1/(ωC))。具體說來阻抗可分為兩個(gè)部分,電阻(實(shí)部)和電抗(虛部)。其中電抗又包括容抗和感抗,由電容引起的電流阻礙稱為容抗,由電感引起的電流阻礙稱為感抗。
圖1 復(fù)數(shù)表示方法
二、阻抗匹配的重要性
阻抗匹配是指信號源或者傳輸線跟負(fù)載之間達(dá)到一種適合的搭配。阻抗匹配主要有兩點(diǎn)作用,調(diào)整負(fù)載功率和抑制信號反射。
1、調(diào)整負(fù)載功率
假定激勵(lì)源已定,那么負(fù)載的功率由兩者的阻抗匹配度決定。對于一個(gè)理想化的純電阻電路或者低頻電路,由電感、電容引起的電抗值基本可以忽略,此時(shí)電路的阻抗來源主要為電阻。如圖2所示,電路中電流I=U/(r+R),負(fù)載功率P=I*I*R。由以上兩個(gè)方程可得當(dāng)R=r時(shí)P取得最大值,Pmax=U*U/(4*r)。
圖2 負(fù)載功率調(diào)整
2、抑制信號反射
當(dāng)一束光從空氣射向水中時(shí)會發(fā)生反射,這是因?yàn)楣夂退墓鈱?dǎo)特性不同。同樣,當(dāng)信號傳輸中如果傳輸線上發(fā)生特性阻抗突變也會發(fā)生反射。波長與頻率成反比,低頻信號的波長遠(yuǎn)遠(yuǎn)大于傳輸線的長度,因此一般不用考慮反射問題。高頻領(lǐng)域,當(dāng)信號的波長與傳輸線長出于相同量級時(shí)反射的信號易與原信號混疊,影響信號質(zhì)量。通過阻抗匹配可有效減少、消除高頻信號反射。
圖3 正常信號
圖4 異常信號(反射引起超調(diào))
三、阻抗匹配的方法
阻抗匹配的方法主要有兩個(gè),一是改變組抗力,二是調(diào)整傳輸線。
改變阻抗力就是通過電容、電感與負(fù)載的串并聯(lián)調(diào)整負(fù)載阻抗值,以達(dá)到源和負(fù)載阻抗匹配。
調(diào)整傳輸線是加長源和負(fù)載間的距離,配合電容和電感把阻抗力調(diào)整為零。此時(shí)信號不會發(fā)生發(fā)射,能量都能被負(fù)載吸收。高速PCB布線中,一般把數(shù)字信號的走線阻抗設(shè)計(jì)為50歐姆。一般規(guī)定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線(差分)為85-100歐姆。
四、阻抗匹配的應(yīng)用
1、功放與音箱
無論是定阻抗式還是定電壓式輸出的功放,只有喇叭的總功率和功放的總功率相等時(shí)才能得到最佳的工作狀態(tài)。音箱系統(tǒng)若要完全達(dá)到匹配是非常困難的,它的音頻成分總是在不停的變化,好在音箱系統(tǒng)對阻抗匹配度要求并不高。最常見到的喇叭阻抗的標(biāo)示值是8歐姆,它表示當(dāng)輸入1KHz的正弦波信號,它呈現(xiàn)的阻抗值是八歐姆;或者是在喇叭的工作頻率響應(yīng)范圍內(nèi),平均阻抗為8歐姆。
圖5 音箱
2、PCB走線
高頻領(lǐng)域中,信號頻率對PCB走線的阻抗值影響非常大。一般來說當(dāng)數(shù)字信號邊沿時(shí)間小于1ns或者模擬信號頻率超過300M時(shí)就要考慮阻抗問題。PCB走線阻抗主要來自寄生的電容、電阻、電感系數(shù),主要因素有材料介電常數(shù)、線寬、線厚乃至焊盤的厚度等。PCB 阻抗的范圍是 25 至120 歐姆,USB、 LVDS、 HDMI、 SATA等一般要做85-100歐姆阻抗控制。
圖6 走線匹配阻抗
3、天線設(shè)計(jì)
研究天線阻抗的主要目的是為實(shí)現(xiàn)天線和饋線間的匹配。發(fā)射信號時(shí)應(yīng)使發(fā)射天線與饋線的特性阻抗相等,以獲得最好的信號增益。接收信號時(shí)天線與負(fù)載應(yīng)做共軛匹配,接收機(jī)(負(fù)載)阻抗一般認(rèn)為只有實(shí)數(shù)部分,因此需要用匹配網(wǎng)絡(luò)來除去天線的電抗部分并使它們的電阻部分相等。圖7為天線阻抗匹配時(shí)常用的π型網(wǎng)絡(luò),使用網(wǎng)絡(luò)分析儀測量阻抗以確定 C1、C2、C3 的取值,完成阻抗匹配。
圖7 π型電路
4、終端匹配電阻
在設(shè)計(jì)CAN總線、485總線時(shí)常需要在差分線兩端加終端電阻(匹配電阻),以減少由特性阻抗突變造成的信號反射。如下圖CAN總線網(wǎng)絡(luò),雙絞線特性阻抗為120歐姆,若不加終端電阻兩端直接懸空,空氣的特性阻抗為無窮大。此時(shí),極易出現(xiàn)圖4所示的信號反射。
圖8 CAN總線網(wǎng)絡(luò)
對于CAN總線來說,由于收發(fā)器對信號電平判斷的采樣點(diǎn)位置普遍靠后,因此信號反射一般不會影響通信錯(cuò)誤率。反射會影響產(chǎn)品的EMI特性,最直接的表現(xiàn)就是眼圖實(shí)驗(yàn)效果差,存在兩個(gè)異常凸起。
圖9 CAN總線眼圖
致遠(yuǎn)電子的 M6G2C-256LI 核心板,主要器件由 MPU、 DDR、 Flash、 power 四部分構(gòu)成,看似簡單的架構(gòu)又是如何保證核心板的穩(wěn)定性呢?差分蛇形走線、等長控制、阻抗匹配、 PCB 分層設(shè)計(jì)、高速信號參考地等設(shè)計(jì)來保證產(chǎn)品的設(shè)計(jì)合理性,再配合信號完整性、信號眼圖、信號脈沖等等儀器測試為產(chǎn)品穩(wěn)定性保駕護(hù)航。
圖10 M6G2C-256LI工業(yè)級核心板
如果想要了解更多相關(guān)信息,請多多關(guān)注eeworld,eeworld電子工程世界將給大家提供更全、更詳細(xì)、更新的資訊信息電子行業(yè),EEWORLD原文鏈接:http://www.eeworld.com.cn/qrs/article_2018020844705.html
把電容或電感與負(fù)載串聯(lián)起來,即可增加或減少負(fù)載的阻抗值,在圖表上的點(diǎn)會沿著代表實(shí)數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點(diǎn)會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?
由負(fù)載點(diǎn)至來源點(diǎn)加長傳輸線,在圖表上的圓點(diǎn)會沿著圖中心以逆時(shí)針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調(diào)整為零,完成匹配。
阻抗匹配則傳輸功率大,對于一個(gè)電源來講,單它的內(nèi)阻等于負(fù)載時(shí),輸出功率最大,此時(shí)阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠(yuǎn)遠(yuǎn)大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。
數(shù)位系統(tǒng)之多層板訊號線(Signal Line)中,當(dāng)出現(xiàn)方波訊號的傳輸時(shí),可將之假想成為軟管(hose)送水澆花。一端于手握處加壓使其射出水柱,另一端接在水龍頭。當(dāng)握管處所施壓的力道恰好,而讓水柱的射程正確灑落在目標(biāo)區(qū)時(shí),則施與受兩者皆歡而順利完成使命,豈非一種得心應(yīng)手的小小成就?
然而一旦用力過度水注射程太遠(yuǎn),不但騰空越過目標(biāo)浪費(fèi)水資源,甚至還可能因強(qiáng)力水壓無處宣泄,以致往來源反彈造成軟管自龍頭上的掙脫!不僅任務(wù)失敗橫生挫折,而且還大捅紕漏滿臉豆花呢!
反之,當(dāng)握處之?dāng)D壓不足以致射程太近者,則照樣得不到想要的結(jié)果。過猶不及皆非所欲,唯有恰到好處才能正中下懷皆大歡喜。
上述簡單的生活細(xì)節(jié),正可用以說明方波(Square Wave)訊號(Signal)在多層板傳輸線(Transmission Line,系由訊號線、介質(zhì)層、及接地層三者所共同組成)中所進(jìn)行的快速傳送。此時(shí)可將傳輸線(常見者有同軸電纜Coaxial Cable,與微帶線Microstrip Line或帶線Strip Line等)看成軟管,而握管處所施加的壓力,就好比板面上“接受端”(Receiver)元件所并聯(lián)到Gnd的電阻器一般,可用以調(diào)節(jié)其終點(diǎn)的特性阻抗(Characteristic Impedance),使匹配接受端元件內(nèi)部的需求。