智能視頻處理成為視頻監(jiān)控的“救命稻草”
智能視頻源自計算機(jī)視覺技術(shù),計算機(jī)視覺技術(shù)是人工智能研究的分支之一,它能夠在圖像及圖像內(nèi)容描述之間建立映射關(guān)系,從而使計算機(jī)能夠通過數(shù)字圖像處理和分析來有限理解視頻畫面中的內(nèi)容。運(yùn)用智能視頻分析技術(shù),當(dāng)系統(tǒng)發(fā)現(xiàn)符合某種規(guī)則的行為(如定向運(yùn)動、越界、游蕩、遺留等)發(fā)生時,自動向監(jiān)控系統(tǒng)發(fā)出報警信號(如聲光報警),提示相關(guān)工作人員及時處理可疑事件。
智能視頻算法的實(shí)現(xiàn)
智能視頻技術(shù)實(shí)現(xiàn)對移動目標(biāo)的實(shí)時檢測、識別、分類以及多目標(biāo)跟蹤等功能的主要算法分為以下五類:目標(biāo)檢測、目標(biāo)跟蹤、目標(biāo)識別、行為分析、基于內(nèi)容的視頻檢索和數(shù)據(jù)融合等。
視頻檢索目標(biāo)檢測
目標(biāo)檢測(Object Detection)是按一定時間間隔從視頻圖像中抽取像素,采用軟件技術(shù)來分析數(shù)字化的像素,將運(yùn)動物體從視頻序列中分離出來。運(yùn)動目標(biāo)檢測技術(shù)是智能化分析的基礎(chǔ)。常用的目標(biāo)檢測技術(shù)可以分為背景減除法(Background Subtraction)、時間差分法(Temporal Difference)和光流法(Optic Flow)三類。
背景減除法利用當(dāng)前圖像與背景圖像的差分檢測運(yùn)動區(qū)域。背景減除法假設(shè)視頻場景中有一個背景,而背景和前景并未給出嚴(yán)格定義,背景在實(shí)際使用中是變化的,所以背景建模是背景減除法中非常關(guān)鍵的一步。常用的背景建模方法有時間平均法、自適應(yīng)更新法、高斯模型等。背景減除法能夠提供相對來說比較完全的運(yùn)動目標(biāo)特征數(shù)據(jù),但對于動態(tài)場景的變化,如光線照射情況、攝像機(jī)抖動和外來無關(guān)事件的干擾特別敏感。
時間差分法充分利用了視頻圖像的時域特征,利用相鄰幀圖像的相減來提取出前景移動目標(biāo)的信息。該方法對于動態(tài)環(huán)境具有較強(qiáng)的自適應(yīng)性,不對場景做任何假設(shè),但一般不能完全提取出所有相關(guān)的特征像素點(diǎn),在運(yùn)動實(shí)體內(nèi)部容易產(chǎn)生空洞現(xiàn)象,只能夠檢測到目標(biāo)的邊緣。當(dāng)運(yùn)動目標(biāo)停止時,一般時間差分法便失效。 光流法通過比較連續(xù)幀為每個圖像中的像素賦予一個運(yùn)動矢量從而分割出運(yùn)動物體。
光流法能夠在攝像機(jī)運(yùn)動的情況下檢測出獨(dú)立的運(yùn)動目標(biāo),然而光流法運(yùn)算復(fù)雜度高并且對噪聲很敏感,所以在沒有專門硬件支持下很難用于實(shí)時視頻流檢測中。
視頻檢索目標(biāo)跟蹤
目標(biāo)跟蹤(Object Tracking)算法根據(jù)不同的分類標(biāo)準(zhǔn),有著以下兩種分類方法:根據(jù)目標(biāo)跟蹤與目標(biāo)檢測的時間關(guān)系分類和根據(jù)目標(biāo)跟蹤的策略分類。 根據(jù)目標(biāo)跟蹤與目標(biāo)檢測的時間關(guān)系的分類有三種:
一是先檢測后跟蹤(Detect before Track),先檢測每幀圖像上的目標(biāo),然后將前后兩幀圖像上目標(biāo)進(jìn)行匹配,從而達(dá)到跟蹤的目的。這種方法可以借助很多圖像處理和數(shù)據(jù)處理的現(xiàn)有技術(shù),但是檢測過程沒有充分利用跟蹤過程提供的信息。
二是先跟蹤后檢測(Track before Detect),先對目標(biāo)下一幀所在的位置及其狀態(tài)進(jìn)行預(yù)測或假設(shè),然后根據(jù)檢測結(jié)果來矯正預(yù)測值。這一思路面臨的難點(diǎn)是事先要知道目標(biāo)的運(yùn)動特性和規(guī)律。三是邊檢測邊跟蹤(Track while Detect),圖像序列中目標(biāo)的檢測和跟蹤相結(jié)合,檢測要利用跟蹤來提供處理的對象區(qū)域,跟蹤要利用檢測來提供目標(biāo)狀態(tài)的觀察數(shù)據(jù)。
根據(jù)目標(biāo)跟蹤的策略來分類,通??煞譃?D方法和2D方法。相對3D方法而言,2D方法速度較快,但對于遮擋問題難以處理?;谶\(yùn)動估計的跟蹤是最常用的方法之一。
視頻檢索目標(biāo)識別
目標(biāo)識別(Object Recognize)利用物體顏色、速度、形狀、尺寸等信息進(jìn)行判別,區(qū)分人、交通工具和其他對象。目標(biāo)識別常用人臉識別和車輛識別。
視頻人臉識別的通常分為四個步驟:人臉檢測、人臉跟蹤、特征提取和比對。人臉檢測指在動態(tài)的場景與復(fù)雜的背景中判斷是否存在面像,并分離出這種面像。人臉跟蹤指對被檢測到的面貌進(jìn)行動態(tài)目標(biāo)跟蹤。常用方法有基于模型的方法、基于運(yùn)動與模型相結(jié)合的方法、膚色模型法等。
人臉特征提取方法歸納起來分為三類:第一類是基于邊緣、直線和曲線的基本方法;第二類是基于特征模板的方法;第三類是考慮各種特征之間幾何關(guān)系的結(jié)構(gòu)匹配法。單一基于局部特征的提取方法在處理閉眼、眼鏡和張嘴等情景時遇到困難,相對而言,基于整體特征統(tǒng)計的方法對于圖像亮度和特征形變的魯棒性更強(qiáng)。人臉比對是將抽取出的人臉特征與面像庫中的特征進(jìn)行比對,并找出最佳的匹配對象。
車輛識別主要分為車牌照識別、車型識別和車輛顏色識別等,應(yīng)用最廣泛和技術(shù)較成熟的是車牌照識別。 車牌照識別的步驟分別為:車牌定位、車牌字符分割、車牌字符特征提取和車牌字符識別。
車牌定位是指從車牌圖像中找到車牌區(qū)域并把其分離出來。字符分割是將漢字、英文字母和數(shù)字字符從牌照中提取出來。車牌特征提取的基本任務(wù)是從眾多特征中找出最有效的特征,常用的方法有逐像素特征提取法、骨架特征提取法、垂直水平方向數(shù)據(jù)統(tǒng)計特征提取法、特征點(diǎn)提取法和基于統(tǒng)計特征的提取法。車牌字符識別可以使用貝葉斯分離器、支持向量機(jī)(SVM)和神經(jīng)網(wǎng)絡(luò)分類器(NNC)等算法。
視頻檢索行為分析
行為分析(Behavior Analysis)是指在目標(biāo)檢測、跟蹤和識別的基礎(chǔ)上,對其行為進(jìn)行更高層次的語義分析?,F(xiàn)有的行為分析技術(shù)根據(jù)分析的細(xì)節(jié)程度和對分析結(jié)果的判別要求可以分為三類:第一類使用了大量的細(xì)節(jié),并往往使用已經(jīng)建立好的數(shù)據(jù)進(jìn)行分析而較少使用目標(biāo)的時域信息。基于人臉、手勢、步態(tài)的行為分析方法屬于這一類;第二類是將目標(biāo)作為一個整體,使用目標(biāo)跟蹤的算法來分析其運(yùn)動軌跡以及該目標(biāo)與其它目標(biāo)的交互;第三類是在前兩類的基礎(chǔ)上做一個折中,它使用時域和空域的信息,分析目標(biāo)各部分的運(yùn)動。
視頻檢索圖像檢索
基于內(nèi)容的圖像檢索技術(shù)是由用戶提交檢索樣本,系統(tǒng)根據(jù)樣本對象的底層物理特征生成特征集,然后在視頻庫中進(jìn)行相似性匹配,得到檢索結(jié)果的過程。現(xiàn)有基于內(nèi)容的檢索方法主要分為:基于顏色的檢索方法、基于形狀的檢索方法和基于紋理的檢索方法等。數(shù)據(jù)融合是將來自不同視頻源的數(shù)據(jù)進(jìn)行整合,以獲得更豐富的數(shù)據(jù)分析結(jié)果。