F=fekα
18世紀(jì),著名的數(shù)學(xué)家歐拉曾經(jīng)研究過(guò)摩擦力跟繩索繞在柱子上的圈數(shù)之間的關(guān)系。得出了著名的“歐拉韁繩理論”
在這個(gè)公式里,f代表我們所用的力,F(xiàn)代表我們所要對(duì)抗的力。E代表數(shù)2.718……(自然對(duì)數(shù)的底),k代表繩索和樁子之間的摩擦系數(shù)。α代表饒轉(zhuǎn)角,也就是繩索饒成的弧的長(zhǎng)度跟弧的半徑的比。
這個(gè)不難理解 比如標(biāo)準(zhǔn)磚 你看公式 磚長(zhǎng)+灰縫 磚厚+灰縫 你就能想到 240墻 磚是怎么放的了吧 所以240墻 要放兩塊這樣的磚
預(yù)應(yīng)力張拉理論伸長(zhǎng)量的計(jì)算公式是什么?
預(yù)應(yīng)力張拉理論伸長(zhǎng)量中鋼絞線理論伸長(zhǎng)值計(jì)算如下:理論伸長(zhǎng)值計(jì)算公式:△L=Pp×L/(Ap×Ep)理論伸長(zhǎng)值計(jì)算公式:△L=Pp×L/(Ap×Ep)(其中)Pp=P[(1+e-(KL+μθ))/2]&...
鋼材理論重要計(jì)算方法: 管材: 每米重量=0.02466*壁厚*(外徑-壁厚) 角鋼:每米重量=0.00785*(邊寬+邊寬-邊厚)*邊厚 圓鋼: 每米重量=0.00617*直徑*直徑(螺紋鋼和圓鋼相...
力學(xué)告訴我們,繞在樁上的繩子在滑動(dòng)的時(shí)候,摩擦力可以達(dá)到非常大的程度。繩索繞的圈數(shù)越多,摩擦力也就越大,摩擦力增長(zhǎng)的規(guī)律是:如果圈數(shù)按算術(shù)級(jí)數(shù)增多,摩擦力就按幾何級(jí)數(shù)增長(zhǎng)。所以就算是一個(gè)小孩子,只要能把繩索在不動(dòng)轆轤上繞幾圈,然后抓住繩頭,他的力量就能平衡一個(gè)極大的重物。
格式:pdf
大?。?span id="c26eisw" class="single-tag-height">31KB
頁(yè)數(shù): 19頁(yè)
評(píng)分: 4.4
荊州市第二屆建設(shè)職業(yè)技能大賽 裝飾鑲貼工、砌筑工理論理論知識(shí)復(fù)習(xí)題 (裝飾鑲貼工部分) 一、是非題(對(duì)的劃“√”,錯(cuò)的劃“×”,答案寫在每題括號(hào)內(nèi)) 1.衛(wèi)生間鋪貼地磚必須在找標(biāo)高、彈線時(shí)找好坡度,抹灰餅和標(biāo)筋時(shí) 抹出泛水。(√) 2.裝飾工程所用材料應(yīng)按設(shè)計(jì)要求選用,并應(yīng)符合現(xiàn)行材料規(guī)范規(guī) 定。(√) 3.防水砂漿的養(yǎng)護(hù)很重要,應(yīng)待砂漿終凝后,立即澆水養(yǎng)護(hù)。(√) 4.水刷石的木分格條在使用時(shí), 應(yīng)預(yù)先浸水,斷面呈梯形,大面貼墻。 (×) 5.水磨石面層應(yīng)采用水磨石機(jī)分遍磨光, 只有在邊角處才允許用人工 磨光。(√) 6.不同材料其基體交接處,由于吸水和收縮不一致,接縫處表面的抹 灰層容易開裂。(√) 7.冬期施工要注意室內(nèi)通風(fēng)換氣,排除濕氣,應(yīng)設(shè)專人負(fù)責(zé)定時(shí)開關(guān) 門窗和測(cè)溫。(√) 8.獨(dú)立的方柱抹灰前,先找規(guī)矩、套方,彈線放到地面上。(√) 9.水磨石施工,應(yīng)先做深色的后做淺色的。(
格式:pdf
大小:31KB
頁(yè)數(shù): 7頁(yè)
評(píng)分: 4.7
因?yàn)橛眯?所以專業(yè) 建 設(shè) 人 生 由 我 精 彩 2012年《基礎(chǔ)理論理論與相關(guān)法規(guī)》復(fù)習(xí)指導(dǎo) 第一階段:認(rèn)真吃透教材,掌握每章的重點(diǎn) 《工程造價(jià)管理基礎(chǔ)理論與相關(guān)法規(guī)》教材共由五章組成,各章內(nèi)容自成體系,相互 關(guān)聯(lián)性不高。在第一階段復(fù)習(xí)時(shí),需要認(rèn)真閱讀教材,吃透每個(gè)知識(shí)點(diǎn),掌握各章重點(diǎn)。 有關(guān)各章節(jié)知識(shí)點(diǎn)在相關(guān)復(fù)習(xí)資料中都有體現(xiàn),在此,我們將重點(diǎn)詳細(xì)解釋一下。 1 第一章:工程造價(jià)管理概論 本章重點(diǎn)在第三、四節(jié)。 1.1 工程造價(jià)的相關(guān)概念是本節(jié)的重點(diǎn),歷年考試幾乎都在此出題。建設(shè)項(xiàng)目總投資、固定 資產(chǎn)投資、動(dòng)態(tài)投資、靜態(tài)投資、建安工程投資等,一方面要了解這些概念本身的含義, 另一方面,更為重要的是要注意這些概念之間的關(guān)系。 1.2 工程造價(jià)管理的基本內(nèi)容應(yīng)該是本節(jié)的重點(diǎn)。近年來(lái),在此處的考點(diǎn)越來(lái)越細(xì),希望考 生認(rèn)真閱讀教材,比如,工程造價(jià)有效控制的組織措施、技術(shù)措施、經(jīng)濟(jì)措施的區(qū)分。
釋義:1. 系馬的繩索。
【出處】:《水滸傳》第五回:“原來(lái)心慌不曾解得韁繩,連忙扯斷了,騎著摌馬飛走?!?
釋義:2. 韁繩:牽牲口的繩子。
【出處】:《西游記》第五三回:“ 孫大圣前邊引路,豬八戒攏了韁繩?!?
【示例】:
《二十年目睹之怪現(xiàn)狀》第六九回:“我心中無(wú)限焦燥,只得拉著韁繩步行一程,再騎一程。”
柳青 《銅墻鐵壁》第一章:“正說(shuō)著,吳忠趕上來(lái)了,從首長(zhǎng)手里接去騾子的韁繩,就拉著下山。”
以下判斷基于此圖的基圖連通。
無(wú)向圖存在歐拉回路的充要條件
一個(gè)無(wú)向圖存在歐拉回路,當(dāng)且僅當(dāng)該圖所有頂點(diǎn)度數(shù)都為偶數(shù),且該圖是連通圖。
有向圖存在歐拉回路的充要條件
一個(gè)有向圖存在歐拉回路,所有頂點(diǎn)的入度等于出度且該圖是連通圖。
混合圖存在歐拉回路條件
要判斷一個(gè)混合圖G(V,E)(既有有向邊又有無(wú)向邊)是歐拉圖,方法如下:
假設(shè)有一張圖有向圖G',在不論方向的情況下它與G同構(gòu)。并且G'包含了G的所有有向邊。那么如果存在一個(gè)圖G'使得G'存在歐拉回路,那么G就存在歐拉回路。
其思路就將混合圖轉(zhuǎn)換成有向圖判斷。實(shí)現(xiàn)的時(shí)候,我們使用網(wǎng)絡(luò)流的模型?,F(xiàn)任意構(gòu)造一個(gè)G'。用Ii表示第i個(gè)點(diǎn)的入度,Oi表示第i個(gè)點(diǎn)的出度。如果存在一個(gè)點(diǎn)k,|Ok-Ik|mod 2=1,那么G不存在歐拉回路。接下來(lái)則對(duì)于所有Ii>Oi的點(diǎn)從源點(diǎn)連到i一條容量為(Ii-Oi)/2的邊,對(duì)于所有Ii
無(wú)向圖歐拉回路解法
求歐拉回路的一種解法
下面是無(wú)向圖的歐拉回路輸出代碼:注意輸出的前提是已經(jīng)判斷圖確實(shí)是歐拉回路。
C語(yǔ)言代碼,不全,請(qǐng)不要直接粘貼。
intnum=0;//標(biāo)記輸出隊(duì)列 intmatch[MAX];//標(biāo)志節(jié)點(diǎn)的度,無(wú)向圖,不區(qū)分入度和出度 voidsolve(intx) { if(match[x]==0) Record[num ]=x; else { for(intk=0;k<=500;k ) { if(Array[x][k]!=0) { Array[x][k]--; Array[k][x]--; match[x]--; match[k]--; solve(k); } } Record[num ]=x; } }
pascal代碼:
求無(wú)向圖的歐拉回路(遞歸實(shí)現(xiàn))
programeuler; constmaxn=10000;{頂點(diǎn)數(shù)上限} maxm=100000;{邊數(shù)上限} typetnode=^tr; tr=record f,t:longint;{邊的起始點(diǎn)和終止點(diǎn)} al:boolean;{訪問標(biāo)記} rev,next:tnode;{反向邊和鄰接表中的下一條邊} end; varn,m,bl:longint;{頂點(diǎn)數(shù),邊數(shù),基圖的極大連通子圖個(gè)數(shù)} tot:longint; g:array[1..maxn]oftnode; d:array[1..maxn]oflongint;{頂點(diǎn)的度} fa,rank:array[1..maxn]oflongint;{并查集中元素父結(jié)點(diǎn)和啟發(fā)函數(shù)值} list:array[1..maxm]oftnode;{最終找到的歐拉回路} o:boolean;{原圖中是否存在歐拉回路} procedurebuild(ta,tb:longint);{在鄰接表中建立邊(ta,tb)} vart1,t2:tnode; begin t1:=new(tnode); t2:=new(tnode); t1^.f:=ta; t1^.t:=tb; t1^.al:=false; t1^.rev:=t2; t1^.next:=g[ta]; g[ta]:=t1; t2^.f:=tb; t2^.t:=ta; t2^.al:=false; t2^.rev:=t1; t2^.next:=g[tb]; g[tb]:=t2; end; proceduremerge(a,b:longint);{在并查集中將a,b兩元素合并} varoa,ob:longint; begin oa:=a; whilefa[a]<>adoa:=fa[a]; fa[oa]:=a; ob:=b; whilefa[b]<>bdob:=fa[b]; fa[ob]:=b; ifa<>bthenbegin dec(bl);{合并后,基圖的極大連通子圖個(gè)數(shù)減少1} ifrank[a]=rank[b]theninc(rank[a]); ifrank[a]>rank[b]thenfa[b]:=aelsefa[a]:=b; end; end; procedureinit;{初始化} vari,ta,tb:longint; begin fillchar(fa,sizeof(fa),0); fillchar(rank,sizeof(rank),0); fillchar(d,sizeof(d),0); readln(n,m); fori:=1tondofa[i]:=i; bl:=n; fori:=1tomdobegin readln(ta,tb); build(ta,tb); inc(d[tb]); inc(d[ta]); merge(ta,tb); end; end; proceduresearch(i:longint);{以i為出發(fā)點(diǎn)尋找歐拉回路} varte:tnode; begin te:=g[i]; whilete<>nildobegin ifnotte^.althenbegin te^.al:=true; te^.rev^.al:=true; search(te^.t); list[tot]:=te; dec(tot); end; te:=te^.next; end; end; proceduremain;{主過(guò)程} vari:longint; begin o:=false; fori:=1tondo ifd[i]=0thendec(bl);{排除孤立點(diǎn)的影響} ifbl<>1thenexit;{原圖不連通,無(wú)解} fori:=1tondo ifodd(d[i])thenexit;{存在奇點(diǎn),無(wú)解} o:=true; fori:=1tondo ifd[i]<>0thenbreak; tot:=m; search(i);{從一個(gè)非孤立點(diǎn)開始尋找歐拉回路} end; procedureprint;{輸出結(jié)果} vari:longint; begin ifnotothenwriteln('Nosolution.')elsebegin writeln(list[1]^.f); fori:=1tomdowriteln(list[i]^.t); end; end; begin init; main; print; end.
注意record中的點(diǎn)的排列是輸出的倒序,因此,如果要輸出歐拉路徑,需要將record倒過(guò)來(lái)輸出。
求歐拉回路的思路:
循環(huán)的找到出發(fā)點(diǎn)。從某個(gè)節(jié)點(diǎn)開始,然后查出一個(gè)從這個(gè)出發(fā)回到這個(gè)點(diǎn)的環(huán)路徑。這種方法不保證每個(gè)邊都被遍歷。如果有某個(gè)點(diǎn)的邊沒有被遍歷就讓這個(gè)點(diǎn)為起點(diǎn),這條邊為起始邊,把它和當(dāng)前的環(huán)銜接上。這樣直至所有的邊都被遍歷。這樣,整個(gè)圖就被連接到一起了。
具體步驟:
1。如果此時(shí)與該點(diǎn)無(wú)相連的點(diǎn),那么就加入路徑中
2。如果該點(diǎn)有相連的點(diǎn),那么就加入隊(duì)列之中,遍歷這些點(diǎn),直到?jīng)]有相連的點(diǎn)。
3。處理當(dāng)前的點(diǎn),刪除走過(guò)的這條邊,并在其相鄰的點(diǎn)上進(jìn)行同樣的操作,并把刪除的點(diǎn)加入到路徑中去。
4。這個(gè)其實(shí)是個(gè)遞歸過(guò)程。
歐拉─伯努利梁方程內(nèi)容描述了梁的位移與載重的關(guān)系: