受激散射偏振光放大器(LASSP)由美國研制成功,LASSP利用極化效應(yīng)產(chǎn)生連續(xù)光束,可作為激光器的替代應(yīng)用于光通信和激光手術(shù)等領(lǐng)域,能耗較現(xiàn)有激光器減少1000倍。
利用極化效應(yīng),部分光子和工作物質(zhì)相互作用可產(chǎn)生連續(xù)光束,首先,研究人員加強了電子偏振散射以增強弛豫極化,從而確?;鶓B(tài)的連續(xù)性。其次,利用磁場使偏置電流注入更多載流子,以滿足偏振激光發(fā)射條件。
研究人員通過電激勵微腔中砷化鎵半導(dǎo)體樣本獲得極化,極化能量被快速傳遞給光子而使其迅速衰減,并基于其初始極化性能,作為單色光束從微腔中逸出。
第一個電激勵偏振激光器自1996年該器件被提出以來,世界各國的研究人員始終致力于該項研究。目前該項研究已不再是科學(xué)界的奇跡,而發(fā)展成為一個真正的器件。LASSP可作為微芯片用于計算機,實現(xiàn)片上和片間光通信。
LASSP也可用于當(dāng)今激光器應(yīng)用的任何領(lǐng)域,如光通信和激光手術(shù)。目前LASSP只能在低溫環(huán)境下工作,但開發(fā)者期望研制出可在室溫環(huán)境下工作的LASSP。
美國密歇根大學(xué)研制出了受激散射偏振光放大器(LASSP),可作為現(xiàn)有激光器的一種替代方案,能耗可減少1000倍。
光放大器按照原理可以分為:摻雜光纖放大器、傳輸光纖放大器和半導(dǎo)體激光放大器三種類型。
原理:高頻功率放大器用于發(fā)射機的末級,作用是將高頻已調(diào)波信號進(jìn)行功率放大,以滿足發(fā)送功率的要求,然后經(jīng)過天線將其輻射到空間,保證在一定區(qū)域內(nèi)的接收機可以接收到滿意的信號電平,并且不干擾相鄰信道的通信。...
您錯誤的理解信號放大器了第一,信號在電線中進(jìn)行傳輸?shù)臅r候會有衰減的,所以使用信號放大器只是為了恢復(fù)原始信號第二,現(xiàn)在很多家的電視比較多,一條線走也容易出現(xiàn)信號衰減,所以使用分配信號放大器所以只要使用一...
格式:pdf
大?。?span id="7gswn85" class="single-tag-height">1.4MB
頁數(shù): 10頁
評分: 4.5
針對多芯光纖完善了描述抽運光、信號光和Stokes信號的速率方程組.考慮了溫差對受激布里淵散射的影響,利用有限元法求解溫度分布方程組,分析了前向和后向抽運方式、對流系數(shù)、Stokes初始功率、光纖摻雜粒子密度和光纖長度對受激布里淵散射增益的影響.研究表明:后向抽運方式在抑制受激布里淵散射方面具有明顯優(yōu)勢;減小對流系數(shù)有助于抑制受激布里淵散射;提高光纖摻雜密度能夠加強抑制受激布里淵散射,同時也有助于提高光纖放大器的斜率效率.比較了在相同最佳光纖長度條件下,單芯和19芯光纖放大器的最高工作溫度和受激布里淵散射增益.在受激布里淵散射增益小于閾值的前提下,19芯光纖放大器比單芯光纖放大器具有較低的最高工作溫度,為進(jìn)一步提升輸出功率提供了更大空間.
檢查放大器是否出現(xiàn)自激振蕩,可以把放大器輸入端對地短路,用示波器(或交流毫伏表)接在放大器輸出端進(jìn)行觀察,自激振蕩的頻率一般比較高或極低,而且頻率隨著放大器電路參數(shù)的不同而變化(甚至撥動一下放大器內(nèi)部導(dǎo)線的位置,頻率也會改變)。振蕩波形一般是比較規(guī)則的,而且幅度也較大,往往會使三極管處于飽和或截止?fàn)顟B(tài)。
高頻自激振蕩主要是由于安裝、布線不合理引起的。例如輸入線和輸出線靠得太近,產(chǎn)生正反饋作用。因此,安裝時,元器件布置要緊湊、縮短連線的長度,或進(jìn)行高頻濾波或加入負(fù)反饋,以壓低放大器對高頻信號的放大倍數(shù)或移動高頻信號的相位,從而抑制自激振蕩。
低頻自激振蕩是由于放大器各級電路共用一個直流電源引起的。因為電源總有一定的內(nèi)阻,特別是電池用得時間太長或穩(wěn)壓電源質(zhì)量不高,使得電源內(nèi)阻比較大時,則會引起輸出級接電源處的電壓波動,此電壓波動通過電源供電回路作用到輸入級接電源處,使得輸入級輸出電壓相應(yīng)變化,經(jīng)數(shù)級放大后,波形更厲害,如此循環(huán),就會造成振蕩。最常用的消除方法是在放大器各級電路之間加入"電源去耦電路",以消除級間電源波動的互相影響。
散射光的波長與入射光相同,而其強度與波長λ成反比的散射,稱瑞利散射定律,由瑞利于1871年提出。此定律成立的條件是散射微粒的線度小于波長。若入射光為自然光,不同方向散射光的強度正比于1+cosθ,θ為散射光與入射光間的夾角,稱散射角。θ=0或π時散射光仍為自然光;θ=π/2時散射光為線偏振光;在其他方向上則為部分偏振光。根據(jù)瑞利散射定律可解釋天空的蔚藍(lán)色和夕陽的橙紅色。
當(dāng)散射微粒的線度大于波長時,瑞利散射定律不再成立,散射光強度與微粒的大小和形狀有復(fù)雜的關(guān)系。G.米和P.德拜分別于1908年和1909年以球形粒子為模型詳細(xì)計算3對電磁波的散射。米氏散射理論表明,當(dāng)球形粒子的半徑a<0.3λ/-2π時散射光強遵守瑞利定律,a較大時散射光強與波長的關(guān)系不再明顯。用白光照射由大顆粒組成的物質(zhì)時(如天空的云層等),散射光仍為白色。氣體液化時,在臨界狀態(tài)附近由密度漲落引起的不均勻區(qū)域的線度比波長要大,所產(chǎn)生的強烈散射使原來透明的物質(zhì)變混濁,稱為臨界乳光。
偏振光是指光矢量的振動方向不變,或具有某種規(guī)則地變化的光波。按照其性質(zhì),偏振光又可分為平面偏振光(線偏振光)、圓偏振光和橢圓偏振光、部分偏振光幾種。如果光波電矢量的振動方向只局限在一確定的平面內(nèi),則這種偏振光稱為平面偏振光,因為振動的方向在傳播過程中為一直線,故又稱線偏振光。如果光波電矢量隨時間作有規(guī)則地改變,即電矢量末端軌跡在垂直于傳播方向的平面上呈圓形或橢圓形,則稱為圓偏振光或橢圓偏振光。如果光波電矢量的振動在傳播過程中只是在某一確定的方向上占有相對優(yōu)勢,這種偏振光就稱為部分偏振光。
自然光
光波是橫波,即光波矢量的振動方向垂直于光的傳播方向。通常,光源發(fā)出的光波,其光波矢量的振動在垂直于光的傳播方向上作無規(guī)則取向,但統(tǒng)計平均來說,在空間所有可能的方向上,光波矢量的分布可看作是機會均等的,它們的總和與光的傳播方向是對稱的,即光矢量具有軸對稱性、均勻分布、各方向振動的振幅相同,這種光就稱為自然光。
完全偏振光
(a)線偏振光
光矢量端點的軌跡為直線,即光矢量只沿著一個確定的方向振動,其大小隨相位變化、方向不變,稱為線偏振光。
(b)橢圓偏振光
光矢量端點的軌跡為一橢圓,即光矢量不斷旋轉(zhuǎn),其大小、方向隨時間有規(guī)律的變化。
(c)圓偏振光
光矢量端點的軌跡為一圓,即光矢量不斷旋轉(zhuǎn),其大小不變,但方向隨時間有規(guī)律地變化。
部分偏振光
在垂直于光傳播方向的平面上,含有各種振動方向的光矢量,但光振動在某一方向更顯著,不難看出,部分偏振光是自然光和完全偏振光的疊加。