在成分中,主要是由錫/銀/銅三部分組成,由銀和銅來代替原來的鉛的成分。
在錫/銀/銅系統(tǒng)中,錫與次要元素(銀和銅)之間的冶金反應是決定應用溫度、固化機制以及機械性能的主要因素。按照二元相位圖,在這三個元素之間有三種可能的二元共晶反應。銀與錫之間的一種反應在221°C形成錫基質相位的共晶結構和ε金屬之間的化合相位(Ag3Sn)。銅與錫反應在227°C形成錫基質相位的共晶結構和η金屬間的化合相位(Cu6Sn5)。銀也可以與銅反應在779°C形成富銀α相和富銅α相的共晶合金。可是,在現(xiàn)時的研究中1,對錫/銀/銅三重化合物固化溫度的測量,在779°C沒有發(fā)現(xiàn)相位轉變。這表示很可能銀和銅在三重化合物中直接反應。而在溫度動力學上更適于銀或銅與錫反應,以形成Ag3Sn或Cu6Sn5金屬間的化合物。因此,錫/銀/銅三重反應可預料包括錫基質相位、ε金屬之間的化合相位(Ag3Sn)和η金屬間的化合相位(Cu6Sn5)。
和雙相的錫/銀和錫/銅系統(tǒng)所確認的一樣,相對較硬的Ag3Sn和Cu6Sn5 粒子在錫基質的錫/銀/銅三重合金中,可通過建立一個長期的內部應力,有效地強化合金。這些硬粒子也可有效地阻擋疲勞裂紋的蔓延。Ag3Sn和Cu6Sn5粒子的形成可分隔較細小的錫基質顆粒。Ag3Sn和Cu6Sn5粒子越細小,越可以有效的分隔錫基質顆粒,結果是得到整體更細小的微組織。這有助于顆粒邊界的滑動機制,因此延長了提升溫度下的疲勞壽命。
雖然銀和銅在合金設計中的特定配方對得到合金的機械性能是關鍵的,但發(fā)現(xiàn)熔化溫度對0.5~3.0%的銅和3.0~4.7%的銀的含量變化并不敏感。
機械性能對銀和銅含量的相互關系分別作如下總結2:當銀的含量為大約3.0~3.1%時,屈服強度和抗拉強度兩者都隨銅的含量增加到大約1.5%,而幾乎成線性的增加。超過1.5%的銅,屈服強度會減低,但合金的抗拉強度保持穩(wěn)定。整體的合金塑性對0.5~1.5%的銅是高的,然后隨著銅的進一步增加而降低。對于銀的含量(0.5~1.7%范圍的銅),屈服強度和抗拉強度兩者都隨銀的含量增加到4.1%,而幾乎成線性的增加,但是塑性減少。
在3.0~3.1%的銀時,疲勞壽命在1.5%的銅時達到最大。發(fā)現(xiàn)銀的含量從3.0%增加到更高的水平(達4.7%)對機械性能沒有任何的提高。當銅和銀兩者都配制較高時,塑性受到損害,如96.3Sn/4.7Ag/1.7Cu。
最佳合金成分
合金95.4Sn/3.1Ag/1.5Cu被認為是最佳的。其良好的性能是細小的微組織形成的結果,微組織給予高的疲勞壽命和塑性。對于0.5~0.7%銅的焊錫合金,任何高于大約3%的含銀量都將增加Ag3Sn的粒子體積分數,從而得到更高的強度??墒牵粫僭黾悠趬勖?,可能由于較大的Ag3Sn粒子形成。在較高的含銅量(1~1.7%Cu)時,較大的Ag3Sn粒子可能可能超過較高的Ag3Sn粒子體積分數的影響,造成疲勞壽命降低。當銅超過1.5%(3~3.1%Ag),Cu6Sn5粒子體積分數也會增加??墒?,強度和疲勞壽命不會隨銅而進一步增加。在錫/銀/銅三重系統(tǒng)中,1.5%的銅(3~3.1%Ag)最有效地產生適當數量的、最細小的微組織尺寸的Cu6Sn5粒子,從而達到最高的疲勞壽命、強度和塑性。
據報道,合金93.6Sn/4.7Ag/1.7Cu是217°C溫度的三重共晶合金3??墒?,在冷卻
焊錫膏
曲線測量中,這種合金成分沒有觀察到精確熔化溫度。而得到一個小的溫度范圍:216~217°C。
這種合金成分提高現(xiàn)時研究中的三重合金成分最高的抗拉強度,但其塑性遠低于63Sn/37Pb。95.4Sn/4.1Ag/0.5Cu比95.4Sn/3.1Ag/1.5Cu的屈服強度低。93.6Sn/4.7Ag/1.7Cu的疲勞壽命低于95.4Sn/3.1Ag/1.5Cu。如果顆粒邊界滑動機制主要決定共晶焊錫合金,那么95.4Sn/3.1Ag/1.5Cu,而不是93.6Sn/4.7Ag/1.7Cu,應該更靠近真正的共晶特性。
另外,95.4Sn/3.1Ag/1.5Cu比93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu具有經濟優(yōu)勢。
與63Sn/37Pb比較
3.0~4.7%Ag和0.5~1.7%Cu的合金成分通常具有比63Sn/37Pb更高的抗拉強度。例如,95.4Sn/3.1Ag/1.5Cu和93.6Sn/4.7Ag/1.7Cu在強度和疲勞特性上比63Sn/37Pb好得多。93.6Sn/4.7Ag/1.7Cu的塑性較63Sn/37Pb低,而95.4Sn/3.1Ag/1.5Cu的塑性比63Sn/37Pb還高。
焊錫膏
與96.5Sn/3.5Ag比較
95.4Sn/3.1Ag/1.5Cu具有216~217°C的熔化溫度(幾乎共晶),比共晶的96.5Sn/3.5Ag低大約4°C。當與96.5Sn/3.5Ag比較基本的機械性能時,研究中的特定合金成分在強度和疲勞壽命上表現(xiàn)更好??墒牵休^高銀和銅的合金成分,如93.6Sn/4.7Ag/1.7Cu的塑性比93.6Sn/4.7Ag低。
與99.3Sn/0.7Cu比較
3.0~4.7%Ag和0.5~1.5%Cu的錫/銀/銅成分合金具有較好的強度和疲勞特性,但塑性比99.3Sn/0.7Cu低。
推薦
錫/銀/銅系統(tǒng)中最佳合金成分是95.4Sn/3.1Ag/1.5Cu,它具有良好的強度、抗疲勞和塑性??墒菓撟⒁獾氖?,錫/銀/銅系統(tǒng)能夠達到的最低熔化溫度是216~217°C,這還太高,以適于現(xiàn)時SMT結構下的電路板應用(低于215°C的熔化溫度被認為是一個實際的標準)。
總而言之,含有0.5~1.5%Cu和3.0~3.1%Ag的錫/銀/銅系統(tǒng)的合金成分具有相當好的物理和機械性能。相當而言,95.4Sn/3.1Ag/1.5Cu成本比那些含銀量高的合金低,如93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu。在某些情況中,較高的含銀量可能減低某些性能。
設定錫膏回流溫度曲線
正確的溫度曲線將保證高品質的焊接錫點。
在使用表面貼裝元件的印刷電路板(PCB)裝配中,要得到優(yōu)質的焊點,一條優(yōu)化的回流溫度曲線是最重要的因素之一。溫度曲線是施加于電路裝配上的溫度對時間的函數,當在笛卡爾平面作圖時,回流過程中在任何給定的時間上,代表PCB上一個特定點上的溫度形成一條曲線。
幾個參數影響曲線的形狀,其中最關鍵的是傳送帶速度和每個區(qū)的溫度設定。帶速決定機板暴露在每個區(qū)所設定的溫度下的持續(xù)時間,增加持續(xù)時間可以允許更多時間使電路裝配接近該區(qū)的溫度設定。每個區(qū)所花的持續(xù)時間總和決定總共的處理時間。
每個區(qū)的溫度設定影響PCB的溫度上升速度,高溫在PCB與區(qū)的溫度之間產生一個較大的溫差。增加區(qū)的設定溫度允許機板更快地達到給定溫度。因此,必須作出一個圖形來決定PCB的溫度曲線。接下來是這個步驟的輪廓,用以產生和優(yōu)化圖形。
在開始作曲線步驟之前,需要下列設備和輔助工具:溫度曲線儀、熱電偶、將熱電偶附著于PCB的工具和錫膏參數表??蓮拇蠖鄶抵饕碾娮庸ぞ吖藤I到溫度曲線附件工具箱,這工具箱使得作曲線方便,因為它包含全部所需的附件(除了曲線儀本身)。
在20世紀70年代的表面貼裝技術(Surface Mount Assembly,簡稱SMT),是指在印制電路板焊盤上印刷、涂布焊錫膏,并將表面貼裝元器件準確的貼放到涂有焊錫膏的焊盤上,按照特定的回流溫度曲線加熱電路板,讓焊錫膏熔化,其合金成分冷卻凝固后在元器件與印制電路板之間形成焊點而實現(xiàn)冶金連接的技術。
焊錫膏是伴隨著SMT應運而生的一種新型焊接材料。焊錫膏是一個復雜的體系,是由焊錫粉、助焊劑以及其它的添加物加以混合,形成的乳脂狀混合物。焊錫膏在常溫下有一定的勃度,可將電子元器件初粘在既定位置,在焊接溫度下,隨著溶劑和部分添加劑的揮發(fā),將被焊元器件與印制電路焊盤焊接在一起形成永久連接。
研究表明,助焊劑不僅能去除被焊金屬表面的氧化物,而且能夠防止焊接時基體金屬被氧化,比促使熱從熱源區(qū)向焊接區(qū)傳遞,促使焊料的熔化并潤濕被焊金屬表面,并且還能降低熔融焊料的表面張力。而在焊錫膏中,除了這些作用外,助焊劑還起到承載合金粉末的作用。焊錫膏的助焊劑的主要成分有活化劑、觸變劑、樹脂和溶劑等。助焊劑的成分和含量對焊錫膏的勃度、潤濕性能、抗熱塌性能、黏結性能有很重要的影響。
成分 |
質量百分比 |
成分說明 |
聚合松香 |
20-40% |
成膜物質 |
岐化松香 |
20-40% |
成膜物質 |
聚異丁烯 |
10-30% |
增粘劑 |
改性氫化蓖麻油 |
5-15% |
觸變劑 |
戊二酸 |
0-3% |
|
2, 3 - 二溴- 2 - 丁烯- 1, 4- 二醇 |
0-3% |
活性劑 |
二甘醇二丁醚 |
25-45% |
|
BHT |
0-2% |
|
三乙醇胺 |
0-2% |
有鉛焊錫與無鉛焊錫的區(qū)別如下:1、從錫外觀光澤色上看:有鉛焊錫的表面看上去呈亮白色;無鉛焊錫則是淡黃色的。2、從金屬合金成份來分:有鉛焊錫是含錫和鉛二種主要金屬元素(如:Sn63Pb37、Sn50Pb...
說到焊錫效果好,當然是有鉛焊錫的6337,也就是63%的錫和37%的鉛,熔點低,為183℃。但因為有鉛焊錫在家電的使用時,會對人體產生危害,所以歐洲那邊很久之前就禁止了有鉛焊錫的使用,也就有了后面的無...
格式:pdf
大?。?span id="bxbatbv" class="single-tag-height">65KB
頁數: 4頁
評分: 4.3
研究了不同稀土Ce含量對Sn3Ag2.8Cu無鉛焊錫合金顯微組織、熔化特性、鋪展性能及蠕變斷裂壽命的影響。試驗結果表明,添加微量稀土Ce,對合金的熔化特性影響不大,但能夠明顯改善合金的鋪展性能,當稀土質量分數為0.1%時,鋪展面積提高約50%;同時,適量稀土的添加,能夠顯著細化無鉛焊錫合金組織,但Ce質量分數超過0.1%,在組織中會出現(xiàn)稀土化合物;適量稀土Ce能夠顯著延長Sn3Ag2.8Cu釬料接頭在室溫下的蠕變斷裂壽命,當稀土Ce質量分數為0.1%時,蠕變壽命達到Sn3Ag2.8Cu釬料的9倍以上。綜合考慮,最佳稀土Ce質量分數為0.05%~0.1%。
無鉛焊錫膏
無鉛焊錫膏的成分及最佳合金成分比較
在無鉛錫膏的成分中,主要是由錫/銀/銅三部分組成,由銀和銅來代替原來的鉛的成分。
一、根本的特性和現(xiàn)象
在錫/銀/銅系統(tǒng)中,錫與次要元素(銀和銅)之間的冶金反應是決定應用溫度、固化機制以及機械性能的主要因素。按照二元相位圖,在這三個元素之間有三種可能的二元共晶反應。銀與錫之間的一種反應在221°C形成錫基質相位的共晶結構和ε金屬之間的化合相位(Ag3Sn)。銅與錫反應在227°C形成錫基質相位的共晶結構和η金屬間的化合相位(Cu6Sn5)。銀也可以與銅反應在779°C形成富銀α相和富銅α相的共晶合金。可是,在現(xiàn)時的研究中1,對錫/銀/銅三重化合物固化溫度的測量,在779°C沒有發(fā)現(xiàn)相位轉變。這表示很可能銀和銅在三重化合物中直接反應。而在溫度動力學上更適于銀或銅與錫反應,以形成Ag3Sn或Cu6Sn5金屬間的化合物。因此,錫/銀/銅三重反應可預料包括錫基質相位、ε金屬之間的化合相位(Ag3Sn)和η金屬間的化合相位(Cu6Sn5)。
和雙相的錫/銀和錫/銅系統(tǒng)所確認的一樣,相對較硬的Ag3Sn和Cu6Sn5 粒子在錫基質的錫/銀/銅三重合金中,可通過建立一個長期的內部應力,有效地強化合金。這些硬粒子也可有效地阻擋疲勞裂紋的蔓延。Ag3Sn和Cu6Sn5粒子的形成可分隔較細小的錫基質顆粒。Ag3Sn和Cu6Sn5粒子越細小,越可以有效的分隔錫基質顆粒,結果是得到整體更細小的微組織。這有助于顆粒邊界的滑動機制,因此延長了提升溫度下的疲勞壽命。
雖然銀和銅在合金設計中的特定配方對得到合金的機械性能是關鍵的,但發(fā)現(xiàn)熔化溫度對0.5~3.0%的銅和3.0~4.7%的銀的含量變化并不敏感。
機械性能對銀和銅含量的相互關系分別作如下總結2:當銀的含量為大約3.0~3.1%時,屈服強度和抗拉強度兩者都隨銅的含量增加到大約1.5%,而幾乎成線性的增加。超過1.5%的銅,屈服強度會減低,但合金的抗拉強度保持穩(wěn)定。整體的合金塑性對0.5~1.5%的銅是高的,然后隨著銅的進一步增加而降低。對于銀的含量(0.5~1.7%范圍的銅),屈服強度和抗拉強度兩者都隨銀的含量增加到4.1%,而幾乎成線性的增加,但是塑性減少。
在3.0~3.1%的銀時,疲勞壽命在1.5%的銅時達到最大。發(fā)現(xiàn)銀的含量從3.0%增加到更高的水平(達4.7%)對機械性能沒有任何的提高。當銅和銀兩者都配制較高時,塑性受到損害,如96.3Sn/4.7Ag/1.7Cu。
最佳合金成分
合金95.4Sn/3.1Ag/1.5Cu被認為是最佳的。其良好的性能是細小的微組織形成的結果,微組織給予高的疲勞壽命和塑性。對于0.5~0.7%銅的焊錫合金,任何高于大約3%的含銀量都將增加Ag3Sn的粒子體積分數,從而得到更高的強度??墒?,它不會再增加疲勞壽命,可能由于較大的Ag3Sn粒子形成。在較高的含銅量(1~1.7%Cu)時,較大的Ag3Sn粒子可能可能超過較高的Ag3Sn粒子體積分數的影響,造成疲勞壽命降低。當銅超過1.5%(3~3.1%Ag),Cu6Sn5粒子體積分數也會增加??墒牵瑥姸群推趬勖粫S銅而進一步增加。在錫/銀/銅三重系統(tǒng)中,1.5%的銅(3~3.1%Ag)最有效地產生適當數量的、最細小的微組織尺寸的Cu6Sn5粒子,從而達到最高的疲勞壽命、強度和塑性。
據報道,合金93.6Sn/4.7Ag/1.7Cu是217°C溫度的三重共晶合金3??墒?,在冷卻曲線測量中,這種合金成分沒有觀察到精確熔化溫度。而得到一個小的溫度范圍:216~217°C。
這種合金成分提高現(xiàn)時研究中的三重合金成分最高的抗拉強度,但其塑性遠低于63Sn/37Pb。合金95.4Sn/4.1Ag/0.5Cu比95.4Sn/3.1Ag/1.5Cu的屈服強度低。93.6Sn/4.7Ag/1.7Cu的疲勞壽命低于95.4Sn/3.1Ag/1.5Cu。如果顆粒邊界滑動機制主要決定共晶焊錫合金,那么95.4Sn/3.1Ag/1.5Cu,而不是93.6Sn/4.7Ag/1.7Cu,應該更靠近真正的共晶特性。
另外,95.4Sn/3.1Ag/1.5Cu比93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu具有經濟優(yōu)勢。
與63Sn/37Pb比較
3.0~4.7%Ag和0.5~1.7%Cu的合金成分通常具有比63Sn/37Pb更高的抗拉強度。例如,95.4Sn/3.1Ag/1.5Cu和93.6Sn/4.7Ag/1.7Cu在強度和疲勞特性上比63Sn/37Pb好得多。93.6Sn/4.7Ag/1.7Cu的塑性較63Sn/37Pb低,而95.4Sn/3.1Ag/1.5Cu的塑性比63Sn/37Pb還高。與96.5Sn/3.5Ag比較
95.4Sn/3.1Ag/1.5Cu具有216~217°C的熔化溫度(幾乎共晶),比共晶的96.5Sn/3.5Ag低大約4°C。當與96.5Sn/3.5Ag比較基本的機械性能時,研究中的特定合金成分在強度和疲勞壽命上表現(xiàn)更好??墒牵休^高銀和銅的合金成分,如93.6Sn/4.7Ag/1.7Cu的塑性比93.6Sn/4.7Ag低。
與99.3Sn/0.7Cu比較
3.0~4.7%Ag和0.5~1.5%Cu的錫/銀/銅成分合金具有較好的強度和疲勞特性,但塑性比99.3Sn/0.7Cu低。
推薦
錫/銀/銅系統(tǒng)中最佳合金成分是95.4Sn/3.1Ag/1.5Cu,它具有良好的強度、抗疲勞和塑性??墒菓撟⒁獾氖牵a/銀/銅系統(tǒng)能夠達到的最低熔化溫度是216~217°C,這還太高,以適于現(xiàn)時SMT結構下的電路板應用(低于215°C的熔化溫度被認為是一個實際的標準)。
總而言之,含有0.5~1.5%Cu和3.0~3.1%Ag的錫/銀/銅系統(tǒng)的合金成分具有相當好的物理和機械性能。相當而言,95.4Sn/3.1Ag/1.5Cu成本比那些含銀量高的合金低,如93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu。在某些情況中,較高的含銀量可能減低某些性能。
設定錫膏回流溫度曲線
正確的溫度曲線將保證高品質的焊接錫點。
一、測試方法
在使用表面貼裝元件的印刷電路板(PCB)裝配中,要得到優(yōu)質的焊點,一條優(yōu)化的回流溫度曲線是最重要的因素之一。溫度曲線是施加于電路裝配上的溫度對時間的函數,當在笛卡爾平面作圖時,回流過程中在任何給定的時間上,代表PCB上一個特定點上的溫度形成一條曲線。幾個參數影響曲線的形狀,其中最關鍵的是傳送帶速度和每個區(qū)的溫度設定。帶速決定機板暴露在每個區(qū)所設定的溫度下的持續(xù)時間,增加持續(xù)時間可以允許更多時間使電路裝配接近該區(qū)的溫度設定。每個區(qū)所花的持續(xù)時間總和決定總共的處理時間。
每個區(qū)的溫度設定影響PCB的溫度上升速度,高溫在PCB與區(qū)的溫度之間產生一個較大的溫差。增加區(qū)的設定溫度允許機板更快地達到給定溫度。因此,必須作出一個圖形來決定PCB的溫度曲線。接下來是這個步驟的輪廓,用以產生和優(yōu)化圖形。
在開始作曲線步驟之前,需要下列設備和輔助工具:溫度曲線儀、熱電偶、將熱電偶附著于PCB的工具和錫膏參數表。可從大多數主要的電子工具供應商買到溫度曲線附件工具箱,這工具箱使得作曲線方便,因為它包含全部所需的附件(除了曲線儀本身)
許多回流焊機器包括了一個板上測溫儀,甚至一些較小的、便宜的臺面式爐子。測溫儀一般分為兩類:實時測溫儀,即時傳送溫度/時間數據和作出圖形;而另一種測溫儀采樣儲存數據,然后上載到計算機。
熱電偶必須長度足夠,并可經受典型的爐膛溫度。一般較小直徑的熱電偶,熱質量小響應快,得到的結果精確。
有幾種方法將熱電偶附著于PCB,較好的方法是使用高溫焊錫如銀/錫合金,焊點盡量最小。
另一種可接受的方法,快速、容易和對大多數應用足夠準確,少量的熱化合物(也叫熱導膏或熱油脂)斑點覆蓋住熱電偶,再用高溫膠帶(如Kapton)粘住。
還有一種方法來附著熱電偶,就是用高溫膠,如氰基丙烯酸鹽粘合劑,此方法通常沒有其它方法可靠。 附著的位置也要選擇,通常最好是將熱電偶尖附著在PCB焊盤和相應的元件引腳或金屬端之間。
錫膏特性參數表也是必要的,其包含的信息對溫度曲線是至關重要的,如:所希望的溫度曲線持續(xù)時間、錫膏活性溫度、合金熔點和所希望的回流最高溫度。
開始之前,必須理想的溫度曲線有個基本的認識。理論上理想的曲線由四個部分或區(qū)間組成,前面三個區(qū)加熱、最后一個區(qū)冷卻。爐的溫區(qū)越多,越能使溫度曲線的輪廓達到更準確和接近設定。大多數錫膏都能用四個基本溫區(qū)成功回流。
預熱區(qū),也叫斜坡區(qū),用來將PCB的溫度從周圍環(huán)境溫度提升到所須的活性溫度。在這個區(qū),產品的溫度以不超過每秒2~5°C速度連續(xù)上升,溫度升得太快會引起某些缺陷,如陶瓷電容的細微裂紋,而溫度上升太慢,錫膏會感溫過度,沒有足夠的時間使PCB達到活性溫度。爐的預熱區(qū)一般占整個加熱通道長度的25~33%。
活性區(qū),有時叫做干燥或浸濕區(qū),這個區(qū)一般占加熱通道的33~50%,有兩個 功用,第一是,將PCB在相當穩(wěn)定的溫度下感溫,允許不同質量的元件在溫度上同質,減少它們的相當溫差。第二個功能是,允許助焊劑活性化,揮發(fā)性的物質從錫膏中揮發(fā)。一般普遍的活性溫度范圍是120~150°C,如果活性區(qū)的溫度設定太高,助焊劑沒有足夠的時間活性化,溫度曲線的斜率是一個向上遞增的斜率。雖然有的錫膏制造商允許活性化期間一些溫度的增加,但是理想的曲線要求相當平穩(wěn)的溫度,這樣使得PCB的溫度在活性區(qū)開始和結束時是相等的。市面上有的爐子不能維持平坦的活性溫度曲線,選擇能維持平坦的活性溫?度曲線的爐子,將提高可焊接性能,使用者有一個較大的處理窗口。 回流區(qū),有時叫做峰值區(qū)或最后升溫區(qū)。這個區(qū)的作用是將PCB裝配的溫度從活性溫度提高到所推薦的峰值溫度?;钚詼囟瓤偸潜群辖鸬娜埸c溫度低一點,而峰值溫度總是在熔點上。典型的峰值溫度范圍是205~230°C,這個區(qū)的溫度設定太高會使其溫升斜率超過每秒2~5°C,或達到回流峰值溫度比推薦的高。這種情況可能引起PCB的過分卷曲、脫層或燒損,并損害元件的完整性。
今天,最普遍使用的合金是Sn63/Pb37,這種比例的錫和鉛使得該合金共晶。共晶合金是在一個特定溫度下熔化的合金,非共晶合金有一個熔化的范圍,而不是熔點,有時叫做塑性裝態(tài)。本文所述的所有例子都是指共晶錫/鉛,因為其使用廣泛,該合金的熔點為183°C。
理想的冷卻區(qū)曲線應該是和回流區(qū)曲線成鏡像關系。越是靠近這種鏡像關系,焊點達到固態(tài)的結構越緊密,得到焊接點的質量越高,結合完整性越好。
作溫度曲線的第一個考慮參數是傳輸帶的速度設定,該設定將決定PCB在加熱?通道所花的時間。典型的錫膏制造廠參數要求3~4分鐘的加熱曲線,用總的加熱通道長度除以總的加熱感溫時間,即為準確的傳輸帶速度,例如,當錫膏要求四分鐘的加熱時間,使用六英尺加熱通道長度,計算為:6 英尺 ÷ 4 分鐘 = 每分鐘 1.5 英尺 = 每分鐘 18 英寸。
接下來必須決定各個區(qū)的溫度設定,重要的是要了解實際的區(qū)間溫度不一定就是該區(qū)的顯示溫度。顯示溫度只是代表區(qū)內熱敏電偶的溫度,如果熱電偶越靠近加熱源,顯示的溫度將相對比區(qū)間溫度較高,熱電偶越靠近PCB的直接通道,顯示的溫度將越能反應區(qū)間溫度。明智的是向爐子制造商咨詢了解清楚顯示溫度和實際區(qū)間溫度的關系。本文中將考慮的是區(qū)間溫度而不是顯示溫度。表一列出的是用于典型PCB裝配回流的區(qū)間溫度和溫度確定后,必須輸入到爐的控制器。看看手冊上其它需要調整的參數,這些參數包括冷卻風扇速度、強制空氣沖擊和惰性氣體流量。一旦所有參數輸入后,啟動機器,爐子穩(wěn)定后(即,所有實際顯示溫度接近符合設定參數)可以開始作曲線。下一部將PCB放入傳送帶,觸發(fā)測溫儀開始記錄數據。為了方便,有些測溫儀包括觸發(fā)功能,在一個相對低的溫度自動啟動測溫儀,典型的這個溫度比人體溫度37°C(98.6°F)稍微高一點。例如,38°C(100°F)的自動觸發(fā)器,允許測溫儀幾乎在PCB剛放入傳送帶進入爐時開始工作,不至于熱電偶在人手上處理時產生誤觸發(fā)。
二、測試結果分析
首先,必須證實從環(huán)境溫度到回流峰值溫度的總時間和所希望的加熱曲線居留時間相協(xié)調,如果太長,按比例地增加傳送帶速度,如果太短,則相反。
選擇與實際圖形形狀最相協(xié)調的曲線。應該考慮從左道右(流程順序)的偏差,例如,如果預熱和回流區(qū)中存在差異,首先將預熱區(qū)的差異調正確,一般最好每次調一個參數,在作進一步調整之前運行這個曲線設定。這是因為一個給定區(qū)的改變也將影響隨后區(qū)的結果。我們也建議新手所作的調整幅度相當較小一點。一旦在特定的爐上取得經驗,則會有較好的"感覺"來作多大幅度的調整。
當最后的曲線圖盡可能的與所希望的圖形相吻合,應該把爐的參數記錄或儲存以備后用。雖然這個過程開始很慢和費力,但最終可以取得熟練和速度,結果得到高品質的PCB的高效率的生產。
無鉛焊錫膏的成分及最佳合金成分比較
在無鉛錫膏的成分中,主要是由錫/銀/銅三部分組成,由銀和銅來代替原來的鉛的成分。
一、根本的特性和現(xiàn)象
在錫/銀/銅系統(tǒng)中,錫與次要元素(銀和銅)之間的冶金反應是決定應用溫度、固化機制以及機械性能的主要因素。按照二元相位圖,在這三個元素之間有三種可能的二元共晶反應。銀與錫之間的一種反應在221°C形成錫基質相位的共晶結構和ε金屬之間的化合相位(Ag3Sn)。銅與錫反應在227°C形成錫基質相位的共晶結構和η金屬間的化合相位(Cu6Sn5)。銀也可以與銅反應在779°C形成富銀α相和富銅α相的共晶合金??墒?,在現(xiàn)時的研究中1,對錫/銀/銅三重化合物固化溫度的測量,在779°C沒有發(fā)現(xiàn)相位轉變。這表示很可能銀和銅在三重化合物中直接反應。而在溫度動力學上更適于銀或銅與錫反應,以形成Ag3Sn或Cu6Sn5金屬間的化合物。因此,錫/銀/銅三重反應可預料包括錫基質相位、ε金屬之間的化合相位(Ag3Sn)和η金屬間的化合相位(Cu6Sn5)。
和雙相的錫/銀和錫/銅系統(tǒng)所確認的一樣,相對較硬的Ag3Sn和Cu6Sn5 粒子在錫基質的錫/銀/銅三重合金中,可通過建立一個長期的內部應力,有效地強化合金。這些硬粒子也可有效地阻擋疲勞裂紋的蔓延。Ag3Sn和Cu6Sn5粒子的形成可分隔較細小的錫基質顆粒。Ag3Sn和Cu6Sn5粒子越細小,越可以有效的分隔錫基質顆粒,結果是得到整體更細小的微組織。這有助于顆粒邊界的滑動機制,因此延長了提升溫度下的疲勞壽命。
雖然銀和銅在合金設計中的特定配方對得到合金的機械性能是關鍵的,但發(fā)現(xiàn)熔化溫度對0.5~3.0%的銅和3.0~4.7%的銀的含量變化并不敏感。
機械性能對銀和銅含量的相互關系分別作如下總結2:當銀的含量為大約3.0~3.1%時,屈服強度和抗拉強度兩者都隨銅的含量增加到大約1.5%,而幾乎成線性的增加。超過1.5%的銅,屈服強度會減低,但合金的抗拉強度保持穩(wěn)定。整體的合金塑性對0.5~1.5%的銅是高的,然后隨著銅的進一步增加而降低。對于銀的含量(0.5~1.7%范圍的銅),屈服強度和抗拉強度兩者都隨銀的含量增加到4.1%,而幾乎成線性的增加,但是塑性減少。
在3.0~3.1%的銀時,疲勞壽命在1.5%的銅時達到最大。發(fā)現(xiàn)銀的含量從3.0%增加到更高的水平(達4.7%)對機械性能沒有任何的提高。當銅和銀兩者都配制較高時,塑性受到損害,如96.3Sn/4.7Ag/1.7Cu。
最佳合金成分
合金95.4Sn/3.1Ag/1.5Cu被認為是最佳的。其良好的性能是細小的微組織形成的結果,微組織給予高的疲勞壽命和塑性。對于0.5~0.7%銅的焊錫合金,任何高于大約3%的含銀量都將增加Ag3Sn的粒子體積分數,從而得到更高的強度。可是,它不會再增加疲勞壽命,可能由于較大的Ag3Sn粒子形成。在較高的含銅量(1~1.7%Cu)時,較大的Ag3Sn粒子可能可能超過較高的Ag3Sn粒子體積分數的影響,造成疲勞壽命降低。當銅超過1.5%(3~3.1%Ag),Cu6Sn5粒子體積分數也會增加??墒?,強度和疲勞壽命不會隨銅而進一步增加。在錫/銀/銅三重系統(tǒng)中,1.5%的銅(3~3.1%Ag)最有效地產生適當數量的、最細小的微組織尺寸的Cu6Sn5粒子,從而達到最高的疲勞壽命、強度和塑性。
據報道,合金93.6Sn/4.7Ag/1.7Cu是217°C溫度的三重共晶合金3。可是,在冷卻曲線測量中,這種合金成分沒有觀察到精確熔化溫度。而得到一個小的溫度范圍:216~217°C。
這種合金成分提高現(xiàn)時研究中的三重合金成分最高的抗拉強度,但其塑性遠低于63Sn/37Pb。合金95.4Sn/4.1Ag/0.5Cu比95.4Sn/3.1Ag/1.5Cu的屈服強度低。93.6Sn/4.7Ag/1.7Cu的疲勞壽命低于95.4Sn/3.1Ag/1.5Cu。如果顆粒邊界滑動機制主要決定共晶焊錫合金,那么95.4Sn/3.1Ag/1.5Cu,而不是93.6Sn/4.7Ag/1.7Cu,應該更靠近真正的共晶特性。
另外,95.4Sn/3.1Ag/1.5Cu比93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu具有經濟優(yōu)勢。
與63Sn/37Pb比較
3.0~4.7%Ag和0.5~1.7%Cu的合金成分通常具有比63Sn/37Pb更高的抗拉強度。例如,95.4Sn/3.1Ag/1.5Cu和93.6Sn/4.7Ag/1.7Cu在強度和疲勞特性上比63Sn/37Pb好得多。93.6Sn/4.7Ag/1.7Cu的塑性較63Sn/37Pb低,而95.4Sn/3.1Ag/1.5Cu的塑性比63Sn/37Pb還高。與96.5Sn/3.5Ag比較
95.4Sn/3.1Ag/1.5Cu具有216~217°C的熔化溫度(幾乎共晶),比共晶的96.5Sn/3.5Ag低大約4°C。當與96.5Sn/3.5Ag比較基本的機械性能時,研究中的特定合金成分在強度和疲勞壽命上表現(xiàn)更好??墒?,含有較高銀和銅的合金成分,如93.6Sn/4.7Ag/1.7Cu的塑性比93.6Sn/4.7Ag低。
與99.3Sn/0.7Cu比較
3.0~4.7%Ag和0.5~1.5%Cu的錫/銀/銅成分合金具有較好的強度和疲勞特性,但塑性比99.3Sn/0.7Cu低。
推薦
錫/銀/銅系統(tǒng)中最佳合金成分是95.4Sn/3.1Ag/1.5Cu,它具有良好的強度、抗疲勞和塑性。可是應該注意的是,錫/銀/銅系統(tǒng)能夠達到的最低熔化溫度是216~217°C,這還太高,以適于現(xiàn)時SMT結構下的電路板應用(低于215°C的熔化溫度被認為是一個實際的標準)。
總而言之,含有0.5~1.5%Cu和3.0~3.1%Ag的錫/銀/銅系統(tǒng)的合金成分具有相當好的物理和機械性能。相當而言,95.4Sn/3.1Ag/1.5Cu成本比那些含銀量高的合金低,如93.6Sn/4.7Ag/1.7Cu和95.4Sn/4.1Ag/0.5Cu。在某些情況中,較高的含銀量可能減低某些性能。
設定錫膏回流溫度曲線
正確的溫度曲線將保證高品質的焊接錫點。
一、測試方法
在使用表面貼裝元件的印刷電路板(PCB)裝配中,要得到優(yōu)質的焊點,一條優(yōu)化的回流溫度曲線是最重要的因素之一。溫度曲線是施加于電路裝配上的溫度對時間的函數,當在笛卡爾平面作圖時,回流過程中在任何給定的時間上,代表PCB上一個特定點上的溫度形成一條曲線。幾個參數影響曲線的形狀,其中最關鍵的是傳送帶速度和每個區(qū)的溫度設定。帶速決定機板暴露在每個區(qū)所設定的溫度下的持續(xù)時間,增加持續(xù)時間可以允許更多時間使電路裝配接近該區(qū)的溫度設定。每個區(qū)所花的持續(xù)時間總和決定總共的處理時間。
每個區(qū)的溫度設定影響PCB的溫度上升速度,高溫在PCB與區(qū)的溫度之間產生一個較大的溫差。增加區(qū)的設定溫度允許機板更快地達到給定溫度。因此,必須作出一個圖形來決定PCB的溫度曲線。接下來是這個步驟的輪廓,用以產生和優(yōu)化圖形。
在開始作曲線步驟之前,需要下列設備和輔助工具:溫度曲線儀、熱電偶、將熱電偶附著于PCB的工具和錫膏參數表。可從大多數主要的電子工具供應商買到溫度曲線附件工具箱,這工具箱使得作曲線方便,因為它包含全部所需的附件(除了曲線儀本身)
許多回流焊機器包括了一個板上測溫儀,甚至一些較小的、便宜的臺面式爐子。測溫儀一般分為兩類:實時測溫儀,即時傳送溫度/時間數據和作出圖形;而另一種測溫儀采樣儲存數據,然后上載到計算機。
熱電偶必須長度足夠,并可經受典型的爐膛溫度。一般較小直徑的熱電偶,熱質量小響應快,得到的結果精確。
有幾種方法將熱電偶附著于PCB,較好的方法是使用高溫焊錫如銀/錫合金,焊點盡量最小。
另一種可接受的方法,快速、容易和對大多數應用足夠準確,少量的熱化合物(也叫熱導膏或熱油脂)斑點覆蓋住熱電偶,再用高溫膠帶(如Kapton)粘住。
還有一種方法來附著熱電偶,就是用高溫膠,如氰基丙烯酸鹽粘合劑,此方法通常沒有其它方法可靠。 附著的位置也要選擇,通常最好是將熱電偶尖附著在PCB焊盤和相應的元件引腳或金屬端之間。
錫膏特性參數表也是必要的,其包含的信息對溫度曲線是至關重要的,如:所希望的溫度曲線持續(xù)時間、錫膏活性溫度、合金熔點和所希望的回流最高溫度。
開始之前,必須理想的溫度曲線有個基本的認識。理論上理想的曲線由四個部分或區(qū)間組成,前面三個區(qū)加熱、最后一個區(qū)冷卻。爐的溫區(qū)越多,越能使溫度曲線的輪廓達到更準確和接近設定。大多數錫膏都能用四個基本溫區(qū)成功回流。
預熱區(qū),也叫斜坡區(qū),用來將PCB的溫度從周圍環(huán)境溫度提升到所須的活性溫度。在這個區(qū),產品的溫度以不超過每秒2~5°C速度連續(xù)上升,溫度升得太快會引起某些缺陷,如陶瓷電容的細微裂紋,而溫度上升太慢,錫膏會感溫過度,沒有足夠的時間使PCB達到活性溫度。爐的預熱區(qū)一般占整個加熱通道長度的25~33%。
活性區(qū),有時叫做干燥或浸濕區(qū),這個區(qū)一般占加熱通道的33~50%,有兩個功用,第一是,將PCB在相當穩(wěn)定的溫度下感溫,允許不同質量的元件在溫度上同質,減少它們的相當溫差。第二個功能是,允許助焊劑活性化,揮發(fā)性的物質從錫膏中揮發(fā)。一般普遍的活性溫度范圍是120~150°C,如果活性區(qū)的溫度設定太高,助焊劑沒有足夠的時間活性化,溫度曲線的斜率是一個向上遞增的斜率。雖然有的錫膏制造商允許活性化期間一些溫度的增加,但是理想的曲線要求相當平穩(wěn)的溫度,這樣使得PCB的溫度在活性區(qū)開始和結束時是相等的。市面上有的爐子不能維持平坦的活性溫度曲線,選擇能維持平坦的活性溫"para" label-module="para">
今天,最普遍使用的合金是Sn63/Pb37,這種比例的錫和鉛使得該合金共晶。共晶合金是在一個特定溫度下熔化的合金,非共晶合金有一個熔化的范圍,而不是熔點,有時叫做塑性裝態(tài)。本文所述的所有例子都是指共晶錫/鉛,因為其使用廣泛,該合金的熔點為183°C。
理想的冷卻區(qū)曲線應該是和回流區(qū)曲線成鏡像關系。越是靠近這種鏡像關系,焊點達到固態(tài)的結構越緊密,得到焊接點的質量越高,結合完整性越好。
作溫度曲線的第一個考慮參數是傳輸帶的速度設定,該設定將決定PCB在加熱"para" label-module="para">
接下來必須決定各個區(qū)的溫度設定,重要的是要了解實際的區(qū)間溫度不一定就是該區(qū)的顯示溫度。顯示溫度只是代表區(qū)內熱敏電偶的溫度,如果熱電偶越靠近加熱源,顯示的溫度將相對比區(qū)間溫度較高,熱電偶越靠近PCB的直接通道,顯示的溫度將越能反應區(qū)間溫度。明智的是向爐子制造商咨詢了解清楚顯示溫度和實際區(qū)間溫度的關系。本文中將考慮的是區(qū)間溫度而不是顯示溫度。表一列出的是用于典型PCB裝配回流的區(qū)間溫度和溫度確定后,必須輸入到爐的控制器??纯词謨陨掀渌枰{整的參數,這些參數包括冷卻風扇速度、強制空氣沖擊和惰性氣體流量。一旦所有參數輸入后,啟動機器,爐子穩(wěn)定后(即,所有實際顯示溫度接近符合設定參數)可以開始作曲線。下一部將PCB放入傳送帶,觸發(fā)測溫儀開始記錄數據。為了方便,有些測溫儀包括觸發(fā)功能,在一個相對低的溫度自動啟動測溫儀,典型的這個溫度比人體溫度37°C(98.6°F)稍微高一點。例如,38°C(100°F)的自動觸發(fā)器,允許測溫儀幾乎在PCB剛放入傳送帶進入爐時開始工作,不至于熱電偶在人手上處理時產生誤觸發(fā)。
二、測試結果分析
首先,必須證實從環(huán)境溫度到回流峰值溫度的總時間和所希望的加熱曲線居留時間相協(xié)調,如果太長,按比例地增加傳送帶速度,如果太短,則相反。
選擇與實際圖形形狀最相協(xié)調的曲線。應該考慮從左道右(流程順序)的偏差,例如,如果預熱和回流區(qū)中存在差異,首先將預熱區(qū)的差異調正確,一般最好每次調一個參數,在作進一步調整之前運行這個曲線設定。這是因為一個給定區(qū)的改變也將影響隨后區(qū)的結果。我們也建議新手所作的調整幅度相當較小一點。一旦在特定的爐上取得經驗,則會有較好的“感覺”來作多大幅度的調整。
當最后的曲線圖盡可能的與所希望的圖形相吻合,應該把爐的參數記錄或儲存以備后用。雖然這個過程開始很慢和費力,但最終可以取得熟練和速度,結果得到高品質的PCB的高效率的生產。
在20世紀70年代的表面貼裝技術(Surface Mount Assembly,簡稱SMT),是指在印制電路板焊盤上印刷、涂布焊錫膏,并將表面貼裝元器件準確的貼放到涂有焊錫膏的焊盤上,按照特定的回流溫度曲線加熱電路板,讓焊錫膏熔化,其合金成分冷卻凝固后在元器件與印制電路板之間形成焊點而實現(xiàn)冶金連接的技術。
焊錫膏是伴隨著SMT應運而生的一種新型焊接材料。焊錫膏是一個復雜的體系,是由焊錫粉、助焊劑以及其它的添加物加以混合,形成的乳脂狀混合物。焊錫膏在常溫下有一定的勃度,可將電子元器件初粘在既定位置,在焊接溫度下,隨著溶劑和部分添加劑的揮發(fā),將被焊元器件與印制電路焊盤焊接在一起形成永久連接。
研究表明,助焊劑不僅能去除被焊金屬表面的氧化物,而且能夠防止焊接時基體金屬被氧化,比促使熱從熱源區(qū)向焊接區(qū)傳遞,促使焊料的熔化并潤濕被焊金屬表面,并且還能降低熔融焊料的表面張力。而在焊錫膏中,除了這些作用外,助焊劑還起到承載合金粉末的作用。焊錫膏的助焊劑的主要成分有活化劑、觸變劑、樹脂和溶劑等。助焊劑的成分和含量對焊錫膏的勃度、潤濕性能、抗熱塌性能、黏結性能有很重要的影響。