中央處理器即CPU,CPU從雛形出現(xiàn)到發(fā)展壯大的今天,由于制造技術的越來越先進,其集成度越來越高,內部的晶體管數達到幾百萬個。雖然從最初的CPU發(fā)展到現(xiàn)在其晶體管數增加了幾十倍,但是CPU的內部結構仍然可分為控制單元,邏輯單元和存儲單元三大部分。CPU的性能大致上反映出了它所配置的那部微機的性能,因此CPU的性能指標十分重要。 CPU性能主要取決于其主頻和工作效率。
中文名稱 | 中央處理器性能指標 | 類????型 | 電子類 |
---|---|---|---|
又????稱 | CPU性能指標 | 包????括 | 主頻等 |
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義并不大。這是因為CPU與系統(tǒng)之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現(xiàn)明顯的“瓶頸”效應—CPU從系統(tǒng)中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,少量的如Inter 酷睿2 核心的奔騰雙核E6500K和一些至尊版的CPU不鎖倍頻,而AMD之前都沒有鎖,AMD推出了黑盒版CPU(即不鎖倍頻版本,用戶可以自由調節(jié)倍頻,調節(jié)倍頻的超頻方式比調節(jié)外頻穩(wěn)定得多)。
制造工藝的微米是指IC內電路與電路之間的距離。制造工藝的趨勢是向密集度愈高的方向發(fā)展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計。主要的180nm、130nm、90nm、65nm、45納米。
主頻也叫時鐘頻率,單位是MHz(或GHz),用來表示CPU的運算、處理數據的速度。CPU的主頻=外頻×倍頻系數。很多人認為主頻就決定著CPU的運行速度,這不僅是個片面的,而且對于服務器來講,這個認識也出現(xiàn)了偏差。至今,沒有一條確定的公式能夠實現(xiàn)主頻和實際的運算速度兩者之間的數值關系,即使是兩大處理器廠家Intel英特爾和AMD,在這點上也存在著很大的爭議,從Intel的產品的發(fā)展趨勢,可以看出Intel很注重加強自身主頻的發(fā)展。像其他的處理器廠家,有人曾經拿過一塊1G的全美達處理器來做比較,它的運行效率相當于2G的Intel處理器。
所以,CPU的主頻與CPU實際的運算能力是沒有直接關系的,主頻表示在CPU內數字脈沖信號震蕩的速度。在Intel的處理器產品中,也可以看到這樣的例子:1 GHz Itanium芯片能夠表現(xiàn)得差不多跟2.66 GHz至強( Xeon)/Opteron一樣快,或是1.5 GHz Itanium 2大約跟4 GHz Xeon/Opteron一樣快。CPU的運算速度還要看CPU的流水線、總線等等各方面的性能指標?。
主頻和實際的運算速度是有關的,只能說主頻僅僅是CPU性能表現(xiàn)的一個方面,而不代表CPU的整體性能。
CPU發(fā)展到現(xiàn)在幾十年了,產品也可以說琳瑯滿目,正在還在使用的都有百種,從白送都沒人要的老舊低性能,到高端多核多線程數萬級別的服務器CPU都有存在。CPU選擇需要根據自己對電腦需要和未來工作幾年打算,...
中央處理器主要包括運算器(算術邏輯運算單元,ALU,Arithmetic Logic Unit)和高速緩沖存儲器(Cache)及實現(xiàn)它們之間聯(lián)系的數據(...
型號很多,服務器CPU品牌及每個品牌下的產品如下:Intel:Intel Xeon E3-1230 v2、Intel Xeon E5-2620等AMD:AMD 十二核皓龍 6174、AMD 皓龍 63...
外頻是CPU的基準頻率,單位是MHz。CPU的外頻決定著整塊主板的運行速度。通俗地說,在臺式機中,所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。但對于服務器CPU來講,超頻是絕對不允許的。前面說到CPU決定著主板的運行速度,兩者是同步運行的,如果把服務器CPU超頻了,改變了外頻,會產生異步運行,(臺式機很多主板都支持異步運行)這樣會造成整個服務器系統(tǒng)的不穩(wěn)定。
絕大部分電腦系統(tǒng)中外頻與主板前端總線不是同步速度的,而外頻與前端總線(FSB)頻率又很容易被混為一談,下面的前端總線介紹談談兩者的區(qū)別。
在解釋超流水線與超標量前,先了解流水線(pipeline)。流水線是Intel首次在486芯片中開始使用的。流水線的工作方式就象工業(yè)生產上的裝配流水線。在CPU中由5—6個不同功能的電路單元組成一條指令處理流水線,然后將一條X86指令分成5—6步后再由這些電路單元分別執(zhí)行,這樣就能實現(xiàn)在一個CPU時鐘周期完成一條指令,因此提高CPU的運算速度。經典奔騰每條整數流水線都分為四級流水,即指令預取、譯碼、執(zhí)行、寫回結果,浮點流水又分為八級流水。
超標量是通過內置多條流水線來同時執(zhí)行多個處理器,其實質是以空間換取時間。而超流水線是通過細化流水、提高主頻,使得在一個機器周期內完成一個甚至多個操作,其實質是以時間換取空間。例如Pentium 4的流水線就長達20級。將流水線設計的步(級)越長,其完成一條指令的速度越快,因此才能適應工作主頻更高的CPU。但是流水線過長也帶來了一定副作用,很可能會出現(xiàn)主頻較高的CPU實際運算速度較低的現(xiàn)象,Intel的奔騰4就出現(xiàn)了這種情況,雖然它的主頻可以高達1.4G以上,但其運算性能卻遠遠比不上AMD 1.2G的速龍甚至奔騰III。
CPU封裝是采用特定的材料將CPU芯片或CPU模塊固化在其中以防損壞的保護措施,一般必須在封裝后CPU才能交付用戶使用。CPU的封裝方式取決于CPU安裝形式和器件集成設計,從大的分類來看通常采用Socket插座進行安裝的CPU使用PGA(柵格陣列)方式封裝,而采用Slot x槽安裝的CPU則全部采用SEC(單邊接插盒)的形式封裝。還有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封裝技術。由于市場競爭日益激烈,CPU封裝技術的發(fā)展方向以節(jié)約成本為主。
格式:pdf
大?。?span id="qaaccys" class="single-tag-height">5.4MB
頁數: 6頁
評分: 4.4
特 性 規(guī) 格 亞克力的物理特性表 亞克力耐化學藥品性 亞克力厚度公差表 亞克力物性特質與其它原料比較 板材規(guī)格 磨砂板規(guī)格 亞克力的物理特性表 Average Physical Properties ? 物性? property ASTM Unit Value 光學 Optical 透光率 ? Light Transmittance D1003-61 % 93 屈折率 ? Refractive index D542-50 D542-50 1.49 熱 Thermal 熱形成溫度 ? Hot Forming Temp -? ℃ 140-180 熱變形溫度 ? Heat Distortion Temp - ℃ 87 線膨脹系數 ? Coefficient Of Liner??????????? Thermal Expansion D696-44 Cm/cm℃ 6×10 -5 比熱?