摻鉺光纖放大器(EDFA即在信號(hào)通過的纖芯中摻入了鉺離子Er3?+?的光信號(hào)放大器。)是1985年英國南安普頓大學(xué)首先研制成功的光放大器,它是光纖通信中最偉大的發(fā)明之一。摻鉺光纖是在石英光纖中摻入了少量的稀土元素鉺(Er)離子的光纖,它是摻鉺光纖放大器的核心。從20世紀(jì)80年代后期開始,摻鉺光纖放大器的研究工作不斷取得重大的突破。WDM技術(shù)、極大地增加了光纖通信的容量。成為當(dāng)前光纖通信中應(yīng)用最廣的光放大器件。
中文名稱 | 摻鉺光纖放大器 | 常用別名 | Erbium Doped Fiber Application Amplifier |
---|---|---|---|
縮寫 | EDFA | EDFA | Er-Doped Fiber Amplifier |
光纖放大器是光纖通信系統(tǒng)對(duì)光信號(hào)直接進(jìn)行放大的光放大器件。在使用光纖的通信系統(tǒng)中,不需將光信號(hào)轉(zhuǎn)換為電信號(hào),直接對(duì)光信號(hào)進(jìn)行放大的一種技術(shù)。摻鉺光纖放大器(EDFA,即在信號(hào)通過的纖芯中摻入了鉺離子Er3 + 的光信號(hào)放大器)是英國南安普頓大學(xué)和日本東北大學(xué)首先研制成功的光放大器,它是光纖通信中最偉大的發(fā)明之一。
摻鉺光纖是在石英光纖中摻入了少量的稀土元素鉺(Er)離子的光纖,它是摻鉺光纖放大器的核心。從20世紀(jì)80年代后期開始,摻鉺光纖放大器的研究工作不斷取得重大的突破。WDM技術(shù)、極大地增加了光纖通信的容量。成為當(dāng)前光纖通信中應(yīng)用最廣的光放大器件。
摻鉺光纖放大器原理
EDFA的基本結(jié)構(gòu),它主要由有源媒質(zhì)(幾十米左右長的摻餌石英光纖,芯徑3-5微米,摻雜濃度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔離器等組成。信號(hào)光與泵浦光在鉺光纖內(nèi)可以在同一方向(同向泵浦)、相反方向(反向泵浦)或兩個(gè)方向( 雙向泵浦)傳播。當(dāng)信號(hào)光與泵光同時(shí)注入到鉺光纖中時(shí),鉺離子在泵光作用下激發(fā)到高能級(jí)上,三能級(jí)系統(tǒng)),并很快衰變到亞穩(wěn)態(tài)能級(jí)上,在入射信號(hào)光作用下回到基態(tài)時(shí)發(fā)射對(duì)應(yīng)于信號(hào)光的光子,使信號(hào)得到放大。其放大的自發(fā)發(fā)射(ASE)譜,帶寬很大(達(dá)20-40nm),且有兩個(gè)峰值,分別對(duì)應(yīng)于1530nm和1550nm。
EDFA的主要優(yōu)點(diǎn)是增益高、帶寬大、輸出功率高、泵浦效率高、插入損耗低、對(duì)偏振態(tài)不敏感等。
摻鉺光纖放大器的工作原理 摻鉺光纖放大器主要是由一段摻鉺光纖(長約10-30m)和泵浦光源組成。其工作原理是:摻鉺光纖在泵浦光源(波長980nm或1480nm)的 作用下產(chǎn)生受激輻射,而且所輻射的光隨著輸入光信號(hào)的變化而變化,這就相當(dāng)于對(duì)輸入光信號(hào)進(jìn)行了放大。研究表明,摻鉺光纖放大器通常可得到15-40db的增益,中繼距離可以在原來的基礎(chǔ)上提高100km以上。那么,人們不禁要問:科學(xué)家們?yōu)槭裁磿?huì)想到在光纖放大器中利用摻雜鉺元素來提高光波的強(qiáng)度呢?我們知道,鉺是稀土元素的一種,而稀土元素又有其特殊的結(jié)構(gòu)特點(diǎn)。長期以來,人們就一直利用在光學(xué)器件中摻雜稀土元素的方法,來改善光學(xué)器件的性能,所以這并不是一個(gè)偶然的因素。另外,為什么泵浦光源的波長選在980nm或1480nm呢?其實(shí),泵浦光源的波長可以是520nm、650nm、980nm、和1480nm,但實(shí)踐證明波長1480nm的泵浦光源激光效率最高,次之是波長980nm的泵浦光源。
光纖放大器相當(dāng)于你喊話時(shí)舉著的喇叭,傳感器相當(dāng)于你的鼻子,耳朵,眼睛,皮膚。。。你如果問的再具體點(diǎn)我可以再回答清楚點(diǎn)
PN輸出的光纖,繼電器線圈另一端接至電源正極,除了電源外還有一個(gè)輸出端,繼電器線圈另一端接至電源負(fù)極,該端接至繼電器的線圈一端,輸出端接至繼電器的線圖一端,PNP輸出的相反光纖放大器,面板顯示和實(shí)際輸...
電纜分同軸電纜,電力電纜和通信電纜,各個(gè)材質(zhì) 不一樣,所以傳輸速率不一樣,通信電纜的傳輸距離及速率受到線徑及距離影響,一般0.4線徑的可以傳輸語音信號(hào)6.6公里,0.5線徑可以...
摻鉺光纖放大器在常規(guī)光纖數(shù)字通信系統(tǒng)中應(yīng)用,可以省去大量的光中繼機(jī),而且中繼距離也大為增加,這對(duì)于長途光纜干線系統(tǒng)具有重要意義。其主要應(yīng)用包括:
1、可作光距離放大器。傳統(tǒng)的電子光纖中繼器有許多局限性。如,數(shù)字信號(hào)和模擬信號(hào)相互轉(zhuǎn)換時(shí),中繼器要作相應(yīng)的改變;設(shè)備由低速率改變成高速率時(shí),中繼器要隨之更換;只有傳輸同一波長的光信號(hào),且結(jié)構(gòu)復(fù)雜、價(jià)格昂貴,等等。摻鉺光纖放大器則克服了這些缺點(diǎn),不僅不必隨信號(hào)方式的改變而改變,而且設(shè)備擴(kuò)容或用于光波分復(fù)用時(shí),也無需更換。
2、可作光發(fā)送機(jī)的后置放大器及光接收機(jī)的前置放大器。作光發(fā)送機(jī)的后置放大器時(shí),可將激光器的發(fā)送功率從0db提高到+10db。作光接收機(jī)的前置放大器時(shí),其靈敏度也可大大提高。因此,只需在線路上設(shè)1-2個(gè)摻鉺放大器,其信號(hào)傳輸距離即可提高100-200km。
此外,摻鉺光纖放大器待解決的問題
摻鉺光纖放大器的獨(dú)特優(yōu)越性已被世人所公認(rèn),并且得到越來越廣泛的應(yīng)用。但是,摻鉺光纖放大器也存在著一定的局限性。比如,在長距離通信中不能上下話路、各站業(yè)務(wù)聯(lián)系比較困難、不便于查找故障、泵浦光源壽命不長,隨著光纖通信技術(shù)的不斷進(jìn)步,這些問題將會(huì)得到完滿的解決。
摻鉺光纖放大器應(yīng)用方式
1.功率放大器(booster-Amplifier),處于合波器之后,用于對(duì)合波以后的多個(gè)波長信號(hào)進(jìn)行功率提升,然后再進(jìn)行傳輸,由于合波后的信號(hào)功率一般都比較大, 所以,對(duì)一功率放大器的噪聲指數(shù)、增益要求并不是很高,但要求放大后,有比較大的輸出功率。
2.線路放大器(Line-Amplifier),處于功率放大器之后,用于周期性地補(bǔ)償線路傳輸損耗,一般要求比較小的噪聲指數(shù),較大的輸出光功率。
3.前置放大器(Pre-Amplifier),處于分波器之前,線路放大器之后,用于信號(hào)放大,提高接收機(jī)的靈敏度(在光信噪比(OSNR)滿足要求情況下,較大的輸入功率可以壓制接收機(jī)本身的噪聲,提高接收靈敏度),要求噪聲指數(shù)很小,對(duì)輸出功率沒有太大的要求。
摻鉺光纖放大器基本參數(shù)
詞名:摻鉺光纖放大器
相關(guān)術(shù)語:Optical Amplifier
石英光纖摻稀土元素(如Nd、Er、Pr、Tm等)后可構(gòu)成多能級(jí)的激光系統(tǒng),在泵浦光作用下使輸入信號(hào)光直接放大。提供合適的反饋后則構(gòu)成光纖激光器。摻Nd光纖放大器的工作波長為1060nm及1330nm,由于偏離光纖通信最佳宿口及其他一些原因,其發(fā)展及應(yīng)用受到限制。EDFA及PDFA的工作波長分別處于光纖通信的最低損耗(1550nm)及零色散波長(1300nm)窗口,TDFA工作在S波段,都非常適合于光纖通信系統(tǒng)應(yīng)用。尤其是EDFA,發(fā)展最為迅速,已實(shí)用化。
在摻鉺光纖發(fā)展的基礎(chǔ)上,不斷出現(xiàn)許多新型光纖放大器,例如,以摻鉺光纖為基礎(chǔ)的雙帶光纖放大器(DBFA),是一種寬帶的光放大器,寬帶幾乎可以覆蓋整個(gè)波分復(fù)用(WDM)帶寬。類似的產(chǎn)品還有超寬帶光放大器(UWOA),它的覆蓋帶寬可對(duì)單根光纖中多達(dá)100路波長信道進(jìn)行放大。
l非線性效應(yīng):
EDFA采用提高注入光纖中光功率的方式放大光功率,但并不是越大越好。當(dāng)光功率增大到一定程度時(shí),將產(chǎn)生光纖非線性效應(yīng)。所以,在使用光纖放大器時(shí),要注意控制單信道入纖光功率的數(shù)值。
增益波長范圍固定: C波段EDFA的工作波長范圍為1530nm~1561nm;L波段EDFA的工作波長范圍為1565nm~1625nm。增益帶寬不平坦:EDFA的增益帶寬很寬,但是EDF本身的增益譜不平坦。在WDM系統(tǒng)中應(yīng)用時(shí)必須采取增益平坦濾波器使其增益平坦。光浪涌問題:當(dāng)光路正常時(shí),由泵浦光激勵(lì)的鉺離子被信號(hào)光帶走,從而完成信號(hào)光的放大。如果截?cái)噍斎牍?,由于亞穩(wěn)態(tài)的鉺離子仍不斷聚集,一旦恢復(fù)信號(hào)光輸入,將產(chǎn)生能量跳變,導(dǎo)致光浪涌。
解決光浪涌的方法是在EDFA中實(shí)現(xiàn)自動(dòng)光功率減弱(APR)或自動(dòng)光功率關(guān)斷(APSD)功能,即EDFA在無輸入光時(shí)自動(dòng)降低功率或自動(dòng)關(guān)斷功率,從而抑制浪涌現(xiàn)象的發(fā)生。
格式:pdf
大?。?span id="muoa2ce" class="single-tag-height">635KB
頁數(shù): 16頁
評(píng)分: 4.4
學(xué)號(hào) 10043112 姓名 黃任軍 第 1頁 共 16 頁 哈 爾 濱 學(xué) 院 答 題 紙 課程 光纖通信 2013-2014 學(xué)年第 1 學(xué)期 課程代碼 40425012 專業(yè)班級(jí) 電氣自動(dòng)化 10-1 班 姓名: 黃任軍 學(xué)號(hào): 10043112 成績 評(píng)閱人 檢查項(xiàng)目 權(quán)重 得 分 (1)選題意義: 文獻(xiàn)分析是否透 徹,選題是否為研究領(lǐng)域的前 沿或熱點(diǎn)話題。 20 (2)學(xué)術(shù)價(jià)值和應(yīng)用價(jià)值 :論文 結(jié)構(gòu)是否合理,概念是否準(zhǔn)確, 論證是否合乎邏輯;分析問題 是否有一定的深度,解決問題 是否有一定的創(chuàng)新。 40 (3)論文摘要:摘要能否簡要地 闡明研究目的、方法、范圍、 結(jié)果及結(jié)論。 20 (4) 論文格式: 論文格式符合 要求。 10 (5)文獻(xiàn)引用:文獻(xiàn)格式是否規(guī) 范,引用是否夠全面。 10 合計(jì) 100 學(xué)號(hào) 100
格式:pdf
大?。?span id="20ue00c" class="single-tag-height">635KB
頁數(shù): 6頁
評(píng)分: 4.7
對(duì)寬帶碲基摻鉺光纖放大器(EDTFA)上能級(jí)粒子數(shù)反轉(zhuǎn)比進(jìn)行了理論研究,得到了碲基摻鉺光纖 放大器上能級(jí)粒子數(shù)反轉(zhuǎn)比隨著光纖激活長度、信號(hào)輸入功率、泵浦功率和纖芯摻雜濃度的演變關(guān)系,分析了 上能級(jí)粒子數(shù)反轉(zhuǎn)比分布與EDTFA信號(hào)增益間的關(guān)系。研究表明,碲基摻鉺光纖內(nèi)的上能級(jí)粒子數(shù)反轉(zhuǎn)比分 布決定了EDTFA的信號(hào)增益。
2008年3月31日,《摻鉺光纖放大器 L波段摻鉺光纖放大器》發(fā)布。
2008年11月1日,《摻鉺光纖放大器 L波段摻鉺光纖放大器》實(shí)施。
主要起草單位:武漢郵電科學(xué)研究院。
主要起草人:梁臣桓、鄧韜、龍浩。
工作波長與光纖最小損耗窗口一致,可在光纖通信中獲得廣泛應(yīng)用;耦合效率高,易于光纖耦合連接,也可用熔接技術(shù)與傳輸光纖熔接在一起,損耗可降至0.1db,熔接反射損耗也很小,不易自激;增益高,輸出功率大,增益可達(dá)40db,輸出功率在單向泵浦時(shí)可達(dá)14dbm,雙向泵浦時(shí)可達(dá)17~20dbm,噪聲系數(shù)可低至 3~4db,串話也很小。edfa也有缺陷,如波長固定只能放大1.55mm左右的光波,光纖換用不同的介質(zhì)時(shí),鉺離子能級(jí)也只能發(fā)生很小的變化,可調(diào)節(jié)的波長有限;增益帶寬不平坦,在wdm系統(tǒng)中需要采用特殊的手段來進(jìn)行增益譜補(bǔ)償。