中文名 | 倒裝芯片 | 外文名 | Flip chip |
---|---|---|---|
類????型 | 無引腳結構含有電路單元 | 用????途 | 電氣上和機械上連接于電路 |
Flip-Chip封裝技術與傳統(tǒng)的引線鍵合工藝相比具有許多明顯的優(yōu)點,包括,優(yōu)越的電學及熱學性能,高I/O引腳數,封裝尺寸減小等。
Flip-Chip封裝技術的熱學性能明顯優(yōu)越于常規(guī)使用的引線鍵合工藝。如今許多電子器件;ASIC,微處理器,SOC等封裝耗散功率10-25W,甚至更大。而增強散熱型引線鍵合的BGA器件的耗散功率僅5-10W。按照工作條件,散熱要求(最大結溫),環(huán)境溫度及空氣流量,封裝參數(如使用外裝熱沉,封裝及尺寸,基板層數,球引腳數)等,相比之下,Flip-Chip封裝通常能產生25W耗散功率。
Flip-Chip封裝杰出的熱學性能是由低熱阻的散熱盤及結構決定的。芯片產生的熱量通過散熱球腳,內部及外部的熱沉實現熱量耗散。散熱盤與芯片面的緊密接觸得到低的結溫(θjc)。為減少散熱盤與芯片間的熱阻,在兩者之間使用高導熱膠體。使得封裝內熱量更容易耗散。為更進一步改進散熱性能,外部熱沉可直接安裝在散熱盤上,以獲得封裝低的結溫(θjc)。
Flip-Chip封裝另一個重要優(yōu)點是電學性能。引線鍵合工藝已成為高頻及某些應用的瓶頸,使用Flip-Chip封裝技術改進了電學性能。如今許多電子器件工作在高頻,因此信號的完整性是一個重要因素。在過去,2-3GHZ是IC封裝的頻率上限,Flip-Chip封裝根據使用的基板技術可高達10-40 GHZ 。
起源于60年代,由IBM率先研發(fā)出,具體原理是在I/Opad上沉積錫鉛球,然后將芯片翻轉加熱利用熔融的錫鉛球與陶瓷板相結合,此技術已替換常規(guī)的打線接合,逐漸成為未來封裝潮流。Flip Chip既是一種芯片互連技術,又是一種理想的芯片粘接技術.早在30年前IBM公司已研發(fā)使用了這項技術。但直到近幾年來,Flip-Chip已成為高端器件及高密度封裝領域中經常采用的封裝形式。今天,Flip-Chip封裝技術的應用范圍日益廣泛,封裝形式更趨多樣化,對Flip-Chip封裝技術的要求也隨之提高。同時,Flip-Chip也向制造者提出了一系列新的嚴峻挑戰(zhàn),為這項復雜的技術提供封裝,組裝及測試的可靠支持。以往的一級封閉技術都是將芯片的有源區(qū)面朝上,背對基板和貼后鍵合,如引線健合和載帶自動健全(TAB)。FC則將芯片有源區(qū)面對基板,通過芯片上呈陣列排列的焊料凸點實現芯片與襯底的互連.硅片直接以倒扣方式安裝到PCB從硅片向四周引出I/O,互聯的長度大大縮短,減小了RC延遲,有效地提高了電性能.顯然,這種芯片互連方式能提供更高的I/O密度.倒裝占有面積幾乎與芯片大小一致.在所有表面安裝技術中,倒裝芯片可以達到最小、最薄的封裝。
Flip chip又稱倒裝片,是在I/O pad上沉積錫鉛球,然后將芯片翻轉加熱利用熔融的錫鉛球與陶瓷基板相結合此技術替換常規(guī)打線接合,逐漸成為未來的封裝主流,當前主要應用于高時脈的CPU、GPU(Graphic Processor Unit)及Chipset 等產品為主。與COB相比,該封裝形式的芯片結構和I/O端(錫球)方向朝下,由于I/O引出端分布于整個芯片表面,故在封裝密度和處理速度上Flip chip已達到頂峰,特別是它可以采用類似SMT技術的手段來加工,因此是芯片封裝技術及高密度安裝的最終方向?!〉寡b片連接有三種主要類型C4(Controlled Collapse Chip Connection)、DCA(Direct chip attach)和FCAA(Flip Chip Adhesive Attachement)。
C4是類似超細間距BGA的一種形式與硅片連接的焊球陣列一般的間距為0.23、 0.254mm。焊球直徑為0.102、0.127mm。焊球組份為97Pb/3Sn。這些焊球在硅片上可以呈完全分布或部分分布。
由于陶瓷可以承受較高的回流溫度,因此陶瓷被用來作為C4連接的基材,通常是在陶瓷的表面上預先分布有鍍Au或Sn的連接盤,然后進行C4形式的倒裝片連接。C4連接的優(yōu)點在于:
1)具有優(yōu)良的電性能和熱特性
2)在中等焊球間距的情況下,I/O數可以很高
3)不受焊盤尺寸的限制
4)可以適于批量生產
5)可大大減小尺寸和重量
DCA和C4類似是一種超細間距連接。DCA的硅片和C4連接中的硅片結構相同,兩者之間的唯一區(qū)別在于基材的選擇。DCA采用的基材是典型的印制材料。DCA的焊球組份是97Pb/Sn,連接焊接盤上的焊料是共晶焊料(37Pb/63Sn)。對于DCA由于間距僅為0.203、0.254mm共晶焊料漏印到連接焊盤上相當困難,所以取代焊膏漏印這種方式,在組裝前給連接焊盤頂鍍上鉛錫焊料,焊盤上的焊料體積要求十分嚴格,通常要比其它超細間距元件所用的焊料多。在連接焊盤上0.051、0.102mm厚的焊料由于是預鍍的,一般略呈圓頂狀,必須要在貼片前整平,否則會影響焊球和焊盤的可靠對位。
FCAA連接存在多種形式,當前仍處于初期開發(fā)階段。硅片與基材之間的連接不采用焊料,而是用膠來代替。這種連接中的硅片底部可以有焊球,也可以采用焊料凸點等結構。FCAA所用的膠包括各向同性和各向異性等多種類型,主要取決于實際應用中的連接狀況,另外,基材的選用通常有陶瓷,印刷板材料和柔性電路板。倒裝芯片技術是當今最先進的微電子封裝技術之一。它將電路組裝密度提升到了一個新高度,隨著21世紀電子產品體積的進一步縮小,倒裝芯片的應用將會越來越廣泛。
倒裝壺,又有倒灌壺、倒流壺、內管壺之稱,這一名稱的得來,與其獨特的使用方式有關。倒裝壺雖然具有壺的形貌,但壺蓋卻與器身連為一體,無法像普通壺那樣從口部注水。原來,在這種壺的底部有一個小孔,使用時把壺倒...
倒裝壺(倒流壺):胎質堅細,釉色淡青,微泛青綠色,潤澤有光。壺身呈圓形,壺蓋不能打開,提梁為鳳凰形,壺流為子母獅形,造型生動逼真。腹飾纏枝牡丹,豐滿華貴,頗具立體感。下飾蓮紋。底部有五瓣梅花孔,注酒或...
它的優(yōu)點是比其它的扎實,而且是多功能機,能打大料和小料,當有阻容及IC等器件在同一燈條板時我們會優(yōu)選這機型來生產。 它可以打0201到QFP,BGA各封閉的料件,甚至01005的料(加底鏡時), 還有...
格式:pdf
大?。?span id="ujtd838" class="single-tag-height">2.1MB
頁數: 1頁
評分: 4.7
關于幾種常用芯片的比較 3528 芯片:單顆 0.06W,單顆流明 7-9LM 3528 技術穩(wěn)定成熟, 發(fā)熱量極低, 光衰小, 光色一致性好, 并廣泛應用于 LED 電腦顯示器, LED 電視機背光照明使用。 3528 芯片因為亮度高,光線柔和,單顆功率低,發(fā)熱量低等特點,完全符合 LED 吸頂燈全 面板光源需求, 全面板光源的應用完全彌補了環(huán)形燈管光線不均勻, 中間以及外圍有暗區(qū)的 缺陷,真正實現了無暗區(qū)。 5630/6040 芯片:單顆功率 0.5-0.6W,單顆流明 30-50W 新近出現的封裝模式, 發(fā)光強度及發(fā)熱量介于中功率和大功率之間, 產量低, 光色一致性較 差,主要用于燈泡,射燈,筒燈,天花燈等高密度燈具,光強很強,炫光感強,很刺眼,必 須配獨立的全鋁散熱器,否則在很短時間內會出現嚴重光衰,嚴重影響燈具壽命。 大功率 1W 芯片:單顆功率為 1W,單顆流明 80-90
近日,博恩世通光電股份有限公司總經理林宇杰分享了倒裝芯片的應用優(yōu)勢以及未來封裝發(fā)展趨勢。
他介紹道,覆晶芯片具有10倍點電極大小,金屬面焊接,更強的焊接力,更低熱阻,額定工作電壓接近理論值2.8伏;同時,藍寶石面出光,外量子效率更高,允許熒光粉噴涂,無需金線,無需支架,允許2倍以上的電流注入等特點。
覆晶芯片在照明應用上的優(yōu)勢明顯,擁有更高的性價比(流明/元),更高的可靠性,更大的發(fā)光角度,更高的發(fā)光密度,系統(tǒng)成本下降,縮短制造流程,便于規(guī)?;a;
而倒裝cob模組將主要應用于高功率產品,具有更高的可靠性,熱阻和節(jié)溫比正裝芯片低30%。
值得一提的是,倒裝芯片cob的產線投資可減少50%,由于無金線,無支架,bom成本減少20%以上,人員也可縮減30%,使其性價比大幅提升。
關于封裝的未來發(fā)展趨勢,他表示,倒裝芯片cob光源將成為球泡燈,筒燈,射燈,工礦燈等品類的主要光源配置;燈帶、日光燈管、平板燈光源仍然是smd的天下,smd往更小尺寸發(fā)展;csp封裝大規(guī)模進入背光源、閃光燈應用;芯片封裝成本進一步降低,高壓小電流簡化散熱器,配合線性ic簡化電源;未來光源會向關注光品質,優(yōu)化光譜方向發(fā)展。
"倒裝芯片技術"這一名詞包括許多不同的方法。每一種方法都有許多不同之處,且應用也有所不同。例如,就電路板或基板類型的選擇而言,無論它是有機材料、陶瓷材料還是柔性材料,都決定著組裝材料(凸點類型、焊劑、底部填充材料等)的選擇,而且在一定程度上還決定著所需設備的選擇。在目前的情況下,每個公司都必須決定采用哪一種技術,選購哪一類工藝部件,為滿足未來產品的需要進行哪一些研究與開發(fā),同時還需要考慮如何將資本投資和運作成本降至最低額。
在SMT環(huán)境中最常用、最合適的方法是焊膏倒裝芯片組裝工藝。即使如此,為了確??芍圃煨浴⒖煽啃圆⑦_到成本目標也應考慮到該技術的許多變化。目前廣泛采用的倒裝芯片方法主要是根據互連結構而確定的。如,柔順凸點技術的實現要采用鍍金的導電聚合物或聚合物/彈性體凸點。
焊柱凸點技術的實現要采用焊球鍵合(主要采用金線)或電鍍技術,然后用導電的各向同性粘接劑完成組裝。工藝中不能對集成電路(1C)鍵合點造成影響。在這種情況下就需要使用各向異性導電膜。焊膏凸點技術包括蒸發(fā)、電鍍、化學鍍、模板印刷、噴注等。因此,互連的選擇就決定了所需的鍵合技術。通常,可選擇的鍵合技術主要包括:再流鍵合、熱超聲鍵合、熱壓鍵合和瞬態(tài)液相鍵合等。
上述各種技術都有利也有弊,通常都受應用而驅動。但就標準SMT工藝使用而言,焊膏倒裝芯片組裝工藝是最常見的,且已證明完全適合SMT。
傳統(tǒng)的焊膏倒裝芯片組裝工藝流程包括:涂焊劑、布芯片、焊膏再流與底部填充等。但為了桷保成功而可靠的倒裝芯片組裝還必須注意其它事項。通常,成功始于設計。
首要的設計考慮包括焊料凸點和下凸點結構,其目的是將互連和IC鍵合點上的應力降至最低。如果互連設計適當的話,已知的可靠性模型可預測出焊膏上將要出現的問題。對IC鍵合點結構、鈍化、聚酰亞胺開口以及下凸點冶金(UBM)結構進行合理的設計即可實現這一目的。鈍化開口的設計必須達到下列目的:降低電流密度;減小集中應力的面積;提高電遷移的壽命;最大限度地增大UBM和焊料凸點的斷面面積。
凸點位置布局是另一項設計考慮,焊料凸點的位置盡可能的對稱,識別定向特征(去掉一個邊角凸點)是個例外。布局設計還必須考慮順流切片操作不會受到任何干擾。在IC的有源區(qū)上布置焊料凸點還取決于IC電路的電性能和靈敏度。除此之外,還有其它的IC設計考慮,但晶片凸點制作公司擁有專門的IC焊點與布局設計準則來保證凸點的可靠性,從而可確?;ミB的可靠性。
主要的板設計考慮包括金屬焊點的尺寸與相關的焊料掩模開口。首先,必須最大限度地增加板焊點位置的潤濕面積以形成較強的結合點。但必須注意板上潤濕面積的大小應與UBM的直徑相匹配。這有助于形成對稱的互連,并可避免互連一端的應力高于另一端,即應力不均衡問題。實際上,設計時,通常會采用使板的焊點直徑略大于UBM直徑的方法,目的是將接合應力集中在電路板一端,而不是較弱的IC上。對焊膏掩模開口進行適當的設計可以控制板焊點位置上的潤濕面積。
既可采用焊膏掩模設計也可采用無焊膏掩模設計,但將這兩種方法結合起來的設計是最可靠的設計手段。在相關的電路板圖形上使用矩形開口并將焊膏掩模的清晰度也考慮在內即可設計出恰當的板焊點位置。如果設計不合理,一旦組裝環(huán)境發(fā)生變化或機械因數有所改變,IC就會出現焊膏疲勞斷裂。采用底部填料的方法的確能夠極大地提高倒裝芯片元件互連的可靠性,但如果不嚴格遵循設計準則的話還是不可避免地會產生同樣的失效機理。
焊料凸點的作用是充當IC與電路板之間的機械互連、電互連、有時還起到熱互連的作用。在典型的倒裝芯片器件中,互連由UBM和焊料凸點本身構成。UBM搭接在晶片鈍化層上,以保護電路不受外部環(huán)境的影響。實際上,UBM充當著凸點的基底。它具有極佳的與晶片金屬和鈍化材料的粘接性能,充當著焊膏與IC鍵合金屬之間的焊膏擴散層,同時還為焊膏提供氧化勢壘潤濕表面。UBM疊層對降低IC焊點下方的應力具有十分重要的作用。
如前所述,焊料凸點制作技術的種類很多。采用蒸發(fā)的方法需要在晶片表面上濺射勢壘金屬(采用掩?;蛴霉饪套鳛檩o助手段)形成UMB,然后蒸發(fā)Sn和Pb形成焊料。在隨后的工藝中對Sn和Pb焊料進行再流,形成球形凸點。這一技術非常適用于采用耐高溫陶瓷基板的含鉛量較高的凸點(相對易熔焊料凸點而言)。但對有機電路板上的SMT應用而言,IC上的高鉛焊料凸點還需要采用易熔焊料來形成互連。
低成本的凸點制作技術,如電鍍或模板印刷(與濺射或化學鍍UBM相結合)都是目前常用的制作工藝。這些工藝的凸點制作成本要比蒸發(fā)低一些,而且在電路上使用易熔焊料還可省去再將其放置到電路板上的那步工藝及其費用。目前生產的其它焊料合金包括無鉛焊料、高鉛焊料和低α焊料等。
對電鍍凸點工藝而言,UBM材料要濺射在整個晶片的表面上,然后淀積光刻膠,并用光刻的方法在IC鍵合點上形成開口。然后將焊接材料電鍍到晶片上并包含在光刻膠的開口中。其后將光刻膠剝離,并對曝光的UBM材料進行刻蝕,對晶片進行再流,形成最終的凸點。另一種常用的方法是將焊料模板印刷到帶圖形的UBM(濺射或電鍍)上,然后再流。
控制凸點的最終高度具有十分重要的作用。它可以保證較高的組裝成品率。用于監(jiān)測凸點制作工藝的破壞性凸點切斷測試方法常常會使焊膏中產生失效模式,但絕不會對UBM或下面的IC焊點造成這樣的結果。
晶片切割常常被看作是后端組裝中的第一步。磨蝕金剛石刀片以60,000rpm的轉速進行切片。切割中要使用去離子水以提高切割的質量并延長刀片的壽命。目前,降低單個IC上的屑片缺陷是一項十分緊迫的任務。因為頂部的屑片有可能接近芯片的有源區(qū),背面的屑片對倒裝芯片的可靠性極其不利。邊緣的斷裂,甚至是芯片區(qū)內的背面芯片在熱應力和機械應力的作用下常會擴展,導致器件的早期失效。
完成晶片切割后,可將切分好的單個芯片留在晶片上,也可將其放置到華夫餅包裝容器、凝膠容器、Surftape或帶與軸封裝中。倒裝芯片布局設備必須具有處理帶凸點的芯片的能力。華夫餅容器適應于小批量需求,或用于免測芯片;帶與軸適用于SMT貼裝設備;送至貼裝設備的晶片較為普遍,且最適合大批量制造應用。
實際的倒裝芯片組裝工藝由分配焊劑開始。分配焊劑的方法有多種,包括浸液、擠涂分配、模板印刷、或噴涂等。每一種方法都有其優(yōu)點和應用范圍。貼裝設備上通常要裝有焊劑或粘接膠浸潤組件。這種方法具備將焊劑固定到芯片凸點上的優(yōu)點。
控制焊劑膜的高度和盤的旋轉速度對批量生產的可重復性十分必要。焊劑分配工藝必須精確控制焊劑的分配量與可重復性。模板印刷焊劑適用于大批量制造,但對逆流設備的要求較高。不管采用哪一種方法,在粘貼倒裝芯片器件時都必須考慮材料的特性和所用焊劑的兼容性。
完成焊劑分配工藝后就可以采用多頭高速元件拾裝系統(tǒng)或超高精度拾裝系統(tǒng)拾取芯片了。為了促進半導體后端制造與EMS組裝市場的結合。
英特爾82P31 圖形和內存控制器中樞 1226 倒裝芯片球柵格陣列 (FCBGA)