上轉(zhuǎn)換發(fā)光材料上轉(zhuǎn)換材料TEM以及光學性質(zhì)

主體材料敏化劑激活劑顏色
NaYF4YbEr綠色
NaGdF4Tm藍色
Ho紅色

以上主體材料、敏化劑、激活劑任意百分比組合都行,但是一般情況下NaYF4、NaGdF4約占75%左右轉(zhuǎn)化效率比較高而激活劑一般比較低大約在2%左右。因為太密集的激活劑會引起激活劑光子本身的猝滅效應。光轉(zhuǎn)化效率降低。

上轉(zhuǎn)換發(fā)光材料造價信息

市場價 信息價 詢價
材料名稱 規(guī)格/型號 市場價
(除稅)
工程建議價
(除稅)
行情 品牌 單位 稅率 供應商 報價日期
發(fā)光格柵教室燈 1200×300×30mm 查看價格 查看價格

LOHUA

13% 深圳市羅化光源有限公司
方形晶格片發(fā)光道釘 PR2F-11-112規(guī)格:白色ABS基座,尺寸:112×94×22mm,晶格反光片,自發(fā)光部分:42×74mm 查看價格 查看價格

欣紅

13% 廣東欣紅陶瓷股份有限公司
反光材料 (玻璃珠) 查看價格 查看價格

t 13% 江油市明瑞反光材料科技有限公司
反光材料 (玻璃珠) 查看價格 查看價格

kg 13% 東莞市縱橫交通設施工程有限公司
硅PU球場材料 8mm硅PU球場材料;包含施工現(xiàn)場綜合價 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
強粘寶防水材料 通用型 查看價格 查看價格

桂湖

kg 13% 新都區(qū)任大姐防水材料經(jīng)營部
強粘寶防水材料 滲透型 查看價格 查看價格

桂湖

kg 13% 四川新桂防水保溫工程有限公司
強粘寶防水材料 通用型 查看價格 查看價格

桂湖

kg 13% 四川新桂防水保溫工程有限公司
材料名稱 規(guī)格/型號 除稅
信息價
含稅
信息價
行情 品牌 單位 稅率 地區(qū)/時間
2300×140×550 9(件)套203mm(8") 查看價格 查看價格

湛江市2007年4季度信息價
4500×140×730 (13件)254mm(10") 查看價格 查看價格

湛江市2007年4季度信息價
2300×140×550 9(件)套203mm(8") 查看價格 查看價格

湛江市2007年3月信息價
4500×140×730 (13件)254mm(10") 查看價格 查看價格

湛江市2007年3月信息價
叻片 廣東甲級 查看價格 查看價格

kg 揭陽市2005年4月信息價
叻片 廣東甲級 查看價格 查看價格

kg 揭陽市2004年1季度信息價
2300×140×550 9(件)套203mm(8") 查看價格 查看價格

湛江市2008年1季度信息價
4500×140×730 (13件)254mm(10") 查看價格 查看價格

湛江市2008年1季度信息價
材料名稱 規(guī)格/需求量 報價數(shù) 最新報價
(元)
供應商 報價地區(qū) 最新報價時間
視頻云網(wǎng)關 視頻云網(wǎng)關|1套 1 查看價格 廣州新流向電子科技有限公司 全國   2020-10-22
稀土長余輝蓄光發(fā)光材料(熒光綠) 稀土長余輝蓄光發(fā)光材料(熒光綠)|10kg 1 查看價格 深圳市耀德興科技有限公司 廣東   2018-06-11
協(xié)議轉(zhuǎn)換 協(xié)議轉(zhuǎn)換|1臺 1 查看價格 四川海帝科技有限公司 四川  成都市 2016-07-13
避雷器 避雷器|1組 1 查看價格 上海巨沈電氣有限公司 遼寧  大連市 2018-06-19
(下)門夾 (下)門夾|45個 2 查看價格 廣東雅潔五金有限公司 廣東  江門市 2021-04-27
(下)門夾 (下)門夾|45個 1 查看價格 廣州市匯泰龍裝飾材料有限公司 廣東  江門市 2021-01-08
轉(zhuǎn)換 1.名稱:轉(zhuǎn)換機|2臺 1 查看價格 廣州熹尚科技設備有限公司 全國   2021-11-05
封堵材料 封堵材料|1200kg 1 查看價格 貴州鑫廣源升建材有限公司 遼寧  大連市 2019-07-30

上轉(zhuǎn)換發(fā)光材料上轉(zhuǎn)換材料光學性質(zhì)

與傳統(tǒng)典型的發(fā)光過程(只涉及一個基態(tài)和一個激發(fā)態(tài))不同,上轉(zhuǎn)換過程需要許多中間態(tài)來累積低頻的激發(fā)光子的能量。其中主要有三種發(fā)光機制:激發(fā)態(tài)吸收、能量轉(zhuǎn)換過程、光子雪崩。這些過程均是通過摻雜在晶體顆粒中的激活離子能級連續(xù)吸收一個或多個光子來實現(xiàn)的,而那些具有f電子和d電子的激活離子因具有大量的亞穩(wěn)能級而被用來上轉(zhuǎn)換發(fā)光。然而高效率的上轉(zhuǎn)換過程,只能靠摻雜三價稀土離子實現(xiàn),因其有較長的亞穩(wěn)能級壽命。

組成及晶性

上轉(zhuǎn)換納米顆粒通常由無機基質(zhì)及鑲嵌在其中的稀土摻雜離子組成。盡管理論上大多數(shù)稀土離子都可以上轉(zhuǎn)換發(fā)光,而事實上低泵浦功率(10W/cm2)激發(fā)下,只有,和作為激活離子時才有可見光被觀察到,原因是這些離子具有較均勻分立的能級可以促進光子吸收和能量轉(zhuǎn)移等上轉(zhuǎn)換所涉及的過程。為了增強上轉(zhuǎn)換效率,通常作為敏化劑與激活劑一同摻雜,因其近紅外光譜顯示其有較寬的吸收域。作為一條經(jīng)驗法則,為了盡量避免激發(fā)能量因交叉弛豫而造成的損失,在敏化劑-激活劑體系中,激活劑的摻雜濃度應不超過2%。

上轉(zhuǎn)換過程的發(fā)生主要依賴于摻雜的稀土離子的階梯狀能級。然而基質(zhì)的晶體結構和光學性質(zhì)在提高上轉(zhuǎn)換效率方面也起到重要作用,因而基質(zhì)的選擇至關重要。用以激發(fā)激活離子的能量可能會被基質(zhì)振動吸收?;|(zhì)晶體結構的不同也會導致激活離子周圍的晶體場的變化,從而引起納米顆粒光學性質(zhì)的變化。優(yōu)質(zhì)的基質(zhì)應具備以下幾種性質(zhì):在于特定波長范圍內(nèi)有較好的透光性,有較低的聲子能和較高的光致?lián)p傷閾值。此外,為實現(xiàn)高濃度摻雜基質(zhì)與摻雜離子應有較好的晶格匹配性。綜上考慮,稀土金屬、堿土金屬和部分過渡金屬離子(如 ,和)的無機化合物可以作為較理想的稀土離子摻雜基質(zhì)。表1列出了常用于生物學研究的上轉(zhuǎn)換材料基質(zhì)。

盡管目前UC顆粒已有許多合成方法,為了得到高效的UC發(fā)光產(chǎn)品,許多研究仍致力于探尋合成高晶化度的UC顆粒。具有較好晶體結構的納米顆粒,其摻雜離子周圍有較強的晶體場,且因晶體缺陷而導致的能量損失較少??紤]到生物領域的應用,為與生物(大)分子結合,納米顆粒應同時具備小尺寸和良好分散性的特點。傳統(tǒng)的合成上轉(zhuǎn)換納米顆粒的方法中,為了得到高晶化度、高分散度、特定的晶相和尺寸的產(chǎn)物,總體上對反應條件有較高的要求,如高溫和長反應時間,而這可能導致顆粒的聚集或顆粒尺寸變大。對此,我們最近研究找到了較溫和的反應條件,在此條件下合成的納米顆粒有小尺寸和較好的光學性質(zhì)。嚴格控制摻雜濃度,還可以得到不同晶相和尺寸的納米顆粒,這一事實在最近Yu的文獻中得到了證實。

光學性質(zhì)

稀土離子的吸收和發(fā)射光譜主要來自內(nèi)層4f電子的躍遷。在外圍5s和5p的電子的屏蔽下,其4f電子幾乎不與基質(zhì)發(fā)生相互作用,因此摻雜的稀土離子的吸收和發(fā)射光譜與其自由離子相似,顯示出極尖銳的峰(半峰寬約為10~20nm)。而這同時就對激發(fā)光源的波長有了很大的限制。幸運的是,商業(yè)化的980nm InGaAs二極管激光系統(tǒng)恰巧與的吸收相匹配,為上轉(zhuǎn)換納米顆粒提供了理想激發(fā)源。

鑭系金屬離子通常有一系列尖銳的發(fā)射峰,因此為光譜的解析提供了特征性較強的圖譜,避免了發(fā)射峰重疊帶來的影響。發(fā)射峰波長在根本上不受基質(zhì)的化學組成和物理尺寸的影響。通過調(diào)節(jié)摻雜離子的成分和濃度,可以控制不同發(fā)射峰的相對強度,從而達到控制發(fā)光顏色的目的。

與傳統(tǒng)的反斯托克斯過程(如雙光子吸收和多光子吸收過程)不同,上轉(zhuǎn)換發(fā)光過程是建立在許多中間能級態(tài)的基礎上的,因此有較高的頻率轉(zhuǎn)換效率。通常,上轉(zhuǎn)換過程可以由低功率的連續(xù)波激光激發(fā),而與之鮮明對比的是"雙光子過程"需要昂貴的大功率激光來激發(fā)。

由于內(nèi)層4f電子躍遷的上轉(zhuǎn)換發(fā)光過程不涉及到化學鍵的斷裂,UC納米顆粒因而具有較高的穩(wěn)定性而無光致褪色和光化學衰褪現(xiàn)象。許多獨立的研究表明,稀土摻雜的納米顆粒在經(jīng)過數(shù)小時的紫外光和紅外激光照射后并未有根本的變化。

UC納米顆粒的上轉(zhuǎn)換發(fā)光具有連續(xù)性,而不會出現(xiàn)"閃光"現(xiàn)象。雖然單個離子會觀測到"閃光",而由于UC納米顆粒中含有大量稀土離子,近期實驗已經(jīng)證實在連續(xù)的紅外激光激發(fā)下其UC納米顆 粒不會出現(xiàn)"閃光"現(xiàn)象。

由于f-f電子躍遷禁阻,三價稀土金屬離子通常具有長發(fā)光壽命。時控發(fā)光檢測技術即利用了這個光學特性,能夠盡量避免因生物組織、某些有機物種或其它摻雜物的多光子激發(fā)過程而產(chǎn)生的短壽命背景熒光的干擾。與傳統(tǒng)的穩(wěn)定態(tài)發(fā)光檢測技術相比,由于信號/噪聲比顯著增大,其檢測靈敏度大大提高。

其原理有激發(fā)態(tài)吸收(ESA)、能量傳遞上轉(zhuǎn)換(ETU)和光子雪崩(PA)三種。

1.1.1激發(fā)態(tài)吸收

激發(fā)態(tài)吸收過程(ESA)是在1959年由Bloembergen等人提出,其原理是同一個離子從基態(tài)通過連續(xù)多光子吸收到達能量較高的激發(fā)態(tài)的過程,這是上轉(zhuǎn)換發(fā)光的基本過程。結合圖2-1說明如下:首先,發(fā)光中心處于基態(tài)E1上的離子吸收一個能量為φ1 的光子,躍遷至中間亞穩(wěn)態(tài)E2能級,若光子的振動能量恰好與E2能級及更高激發(fā)態(tài)能級E3的能量間隔匹配,那么E2能級上的該離子通過吸收光子能量而躍遷至E3能級,從而形成雙光子吸收,若能滿足能量匹配的要求,E3能級上的該離子就有可能向更高的激發(fā)態(tài)能級躍遷從而形成三光子甚至四光子吸收。只要該高能級上粒子數(shù)量夠多,形成粒子數(shù)反轉(zhuǎn),那么就可以實現(xiàn)較高頻率的激光發(fā)射,出現(xiàn)上轉(zhuǎn)換發(fā)光。

圖2-1 激發(fā)態(tài)吸收過程

1.1.2能量傳遞上轉(zhuǎn)換

能量傳遞是指通過非輻射過程將兩個能量相近的激發(fā)態(tài)離子藕合,其中一個把能量轉(zhuǎn)移給另一個回到低能態(tài),另一個離子接受能量而躍遷到更高的能態(tài)。能量傳遞上轉(zhuǎn)換可以發(fā)生在同種離子之間,也可以發(fā)生在不同的離子之間。因此,能量傳遞上轉(zhuǎn)換可以分為兩類:

(a) 連續(xù)能量傳遞

如圖2-2所示,為連續(xù)能量傳遞上轉(zhuǎn)換示意圖。處于激發(fā)態(tài)的施主離子通過無輻射躍遷返回基態(tài),將能量傳遞給受主離子,從而使其躍遷至激發(fā)態(tài),處于激發(fā)態(tài)的受主離子還可以通過此能量傳遞躍遷至更高能級,從而躍遷至基態(tài)時發(fā)射出更高能量的光子。

圖2-2 連續(xù)能量傳遞過程

1.1.3光子雪崩

"光子雪崩"的上轉(zhuǎn)換發(fā)光是1979 年Chivian 等人在研究Pr:Lacl3 材料時首次發(fā)現(xiàn)的,由于它可以作為上轉(zhuǎn)換激光器的激發(fā)機制而引起了人們的廣泛關注。該機制的基礎是:一個能級上的粒子通過交叉弛豫在另一個能級上產(chǎn)生量子效率大于1 的抽運效果。"光子雪崩"過程是激發(fā)態(tài)吸收和能量傳遞相結合的過程,只是能量傳輸發(fā)生在同種離子之間。如圖2-3所示,E0,E1 和E2 分別為基態(tài)和中間亞穩(wěn)態(tài),E為發(fā)射光子高能態(tài)。泵浦光能量對應于E1-E 的能級差。雖然激發(fā)光同基態(tài)吸收不共振,但總有少量的基態(tài)電子被激發(fā)到E 與E2 之間,然后弛豫到E2 上。E2 電子與其它離子的基態(tài)電子發(fā)生能量傳輸Ⅰ,產(chǎn)生兩個E1 電子。一個E1 再吸收一個Φ1 后,激發(fā)到E 能級,E 能級電子又與其他離子的基態(tài)電子相互作用,發(fā)生能量傳輸Ⅱ,則產(chǎn)生三個E1 電子。如此循環(huán),E 能級的電子數(shù)量就會像雪崩一樣急劇增加。當E能級電子向基態(tài)躍遷時,就發(fā)出光子,此過程稱為上轉(zhuǎn)換的"光子雪崩"過程。

上轉(zhuǎn)換發(fā)光材料上轉(zhuǎn)換材料TEM以及光學性質(zhì)常見問題

  • 計價中材料轉(zhuǎn)換

    ????? 工程要求用商品砂漿,可是我在計價軟件中右鍵只顯示現(xiàn)澆砂漿換預拌砂漿,現(xiàn)澆砂漿不是商品砂漿的,我右鍵后關于砂漿的就只有這一條,如圖,你就選擇澆砂漿換預拌砂漿就行了。

  • 材料價格轉(zhuǎn)換問題

    你好:需要知道板材的規(guī)格,然后就可以換算了。

  • 請問發(fā)光材料有哪些?

    稀土材料是比較新的夜光粉。 還有比較早的(國內(nèi)比較晚),氚光產(chǎn)品,既氫的同位素,他本身不發(fā)光,但他衰變產(chǎn)生的輻射可以讓某些發(fā)光體發(fā)光,比如比較老的硫化物(硫化鋅等)或新點的稀土材料粉。  ...

迄今為止,上轉(zhuǎn)換發(fā)光都發(fā)生在摻雜稀土離子的化合物中,主要有氟化物、氧化物、含硫化合物、氟氧化物、鹵化物等。NaYF4是目前上轉(zhuǎn)換發(fā)光效率最高的基質(zhì)材料,比如NaYF4:Er,Yb,即鐿鉺雙摻時,Er做激活劑,Yb作為敏化劑。

上轉(zhuǎn)換發(fā)光材料上轉(zhuǎn)換材料的應用

目前的主要應用為紅外光激發(fā)發(fā)出可見光的紅外探測,生物標識,和長余輝發(fā)光的警示標識,防火通道指示牌或者室內(nèi)墻壁涂裝充當夜燈的作用等。

上轉(zhuǎn)換材料可以用作生物監(jiān)測,藥物治療,CT、MRI等等標記

上轉(zhuǎn)換發(fā)光材料上轉(zhuǎn)換材料TEM以及光學性質(zhì)文獻

發(fā)光學與發(fā)光材料.. 發(fā)光學與發(fā)光材料..

格式:pdf

大?。?span id="glqomjg" class="single-tag-height">507KB

頁數(shù): 11頁

評分: 4.3

發(fā)光學與發(fā)光材料 論 文 論文題目 : 白光 LED 用熒光粉的研究進展 院 系 應用物理與材料學院 專 業(yè) 應用物理 學 號 11060112 學生姓名 郭 梓 浩 指導教師 張梅 博士 完成日期 2014 年 5月 10日 摘要 出于節(jié)約能源的需求,以 LED 為代表的半導體照明器件在 近年來得到了飛速的發(fā)展,并且己經(jīng)發(fā)展成為下一代通用照明應用的 有力候選者。白光 LED 被稱作第四代照明光源,有著龐大的市場。綜 述了目前國內(nèi)外白光 LED 用熒光粉的幾種制備方法,總結了它們的優(yōu) 缺點,概述了白光 LED 用熒光粉的激發(fā)光譜和發(fā)射光譜的特性,并指 出了白光 LED 用熒光粉發(fā)展中需要解決的問題。 關鍵詞 白光 LED 熒光粉 激發(fā)光譜 發(fā)射光譜 The research progress of white LED with phosphors Abstract Demand fo

立即下載
光學電流轉(zhuǎn)換器 光學電流轉(zhuǎn)換器

格式:pdf

大?。?span id="rw1gb5z" class="single-tag-height">507KB

頁數(shù): 未知

評分: 4.4

光學電流轉(zhuǎn)換器

立即下載

上轉(zhuǎn)換發(fā)光材料是一種吸收低能光輻射,發(fā)射高能光輻射的發(fā)光材料。上轉(zhuǎn)移發(fā)光,是指兩個或兩個以上低能光子轉(zhuǎn)換成一個高能光子的現(xiàn)象。上轉(zhuǎn)換發(fā)光材料的發(fā)光機理是由于雙光子或多光子的耦合作用;其特點是所吸收的光子能量低于所發(fā)射的光子能量,這種現(xiàn)象違背斯托克斯(Stokes)定律,因此這類材料又稱為反斯托克斯發(fā)光材料。在一些文獻中上轉(zhuǎn)換發(fā)光材料特指將紅外光轉(zhuǎn)換成可見光的材料。

上轉(zhuǎn)換主要的應用領域有全固態(tài)緊湊型激光器件(紫、藍、綠區(qū)域)、上轉(zhuǎn)換熒光粉、三維立體顯示、紅外量子計數(shù)器、溫度探測器、生物分子的熒光探針、光學存儲材料等。自20世紀60年代發(fā)現(xiàn)上轉(zhuǎn)換發(fā)光材料以來,人們對上轉(zhuǎn)換發(fā)光進行了廣泛的研究。90年代后,隨著應用領域的拓寬,上轉(zhuǎn)換發(fā)光的研究又重新活躍起來;特別是納米微粒的上轉(zhuǎn)換發(fā)光的研究,引起了世界各國的高度重視。國內(nèi)外研究方向主要集中在以氧化釔為發(fā)光基質(zhì)材料,摻雜稀土金屬鐿、鉺等離子的納米微粒材料的制備方法以及其發(fā)光機制、發(fā)光效率改進等方面。

長余輝發(fā)光材料是在自然光或人造光源照射下能夠存儲外界光輻照的能量,然后在某一溫度下(指室溫),緩慢地以可見光的形式釋放,是一種存儲能量的光致發(fā)光材料。長余輝發(fā)光材料稱做蓄光材料或夜光材料。長余輝發(fā)光材料在弱光顯示、照明、特殊環(huán)境(交通、航天、航海、印染、紡織、藝術品等)等方面有重要的應用。

稀土離子摻雜的堿土鋁(硅)酸鹽長余輝材料已進入實用階段。市場上可見的產(chǎn)品除了初級的熒光粉外,主要有夜光標牌、夜光油漆、夜光塑料、夜光膠帶、夜光陶瓷、夜光纖維等,主要用于暗環(huán)境下的弱光指示照明和工藝美術品等。長余輝材料的形態(tài)已從粉末擴展至玻璃、單晶、薄膜和玻璃陶瓷;對長余輝材料應用的要求也從弱光照明、指示等擴展到信息存儲、高能射線探測等領域。長余輝發(fā)光材料屬于電子俘獲材料,其發(fā)光現(xiàn)象是由材料中的陷阱能級所致。由于能級結構的復雜性以及受測試分析手段所限,長余輝材料的發(fā)光機理還沒有十分清晰、統(tǒng)一的理論模型。比較典型的理論模型有空穴模型、電子陷阱模型和位型坐標模型等三種,其中位型坐標模型是得到較多認可的。

按激發(fā)方式可分為光致發(fā)光材料、陰極射線發(fā)光材料、放射線和X射線發(fā)光材料、電致發(fā)光材料。制備工藝通常為高溫固相反應。

上轉(zhuǎn)換發(fā)光材料相關推薦
  • 相關百科
  • 相關知識
  • 相關專欄