中文名 | 模糊優(yōu)化控制 | 外文名 | Fuzzy optimization control |
---|---|---|---|
涉及學(xué)科 | 信息科學(xué) | 利????用 | 模糊數(shù)學(xué)的基本思想和理論 |
目????的 | 使取得最大或最小值 | 應(yīng)????用 | 自動控制 |
優(yōu)化控制是指在給定的約束條件下,尋求一個控制系統(tǒng),使給定的被控系統(tǒng)性能指標(biāo)取得最大或最小值的控制。
隨著科學(xué)技術(shù)的發(fā)展,目前智能控制已開始廣泛應(yīng)用。這種控制將人類的智能,例如把適應(yīng)、學(xué)習(xí)、探索等能力引入控制系統(tǒng),使其具有識別、決策等功能,從而使自動控制和優(yōu)化控制達(dá)到了更高級的階段。
一般說,進(jìn)行優(yōu)化控制必須要具備三個條件:
1、要給出系統(tǒng)的性能指標(biāo)。
2、要給出約束條件。
3、要尋找優(yōu)化控制的機(jī)制和方法。
由于在實際中情況是復(fù)雜多變的,進(jìn)行優(yōu)化控制不可能達(dá)到十全十美,因此優(yōu)化控制只能是相對的或滿意的控制,而難以做到最優(yōu)控制。
1.網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制算法及其實現(xiàn) 網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法就是將復(fù)雜系統(tǒng)的集成優(yōu)化控制方法和網(wǎng)絡(luò)自動化技術(shù)相結(jié)合,用來解決網(wǎng)絡(luò)化復(fù)雜系統(tǒng)的優(yōu)化控制問題,使其在難以建模、系統(tǒng)具有網(wǎng)絡(luò)化和區(qū)域化等情況下,獲得滿意的優(yōu)化控制結(jié)果。網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制方法的特點是引入了網(wǎng)絡(luò)回路,在優(yōu)化算法中引人了一些不確定因素,其優(yōu)化控制更加依賴于網(wǎng)絡(luò)系統(tǒng)和網(wǎng)絡(luò)技術(shù)。網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制的關(guān)鍵技術(shù)在于動態(tài)系統(tǒng)優(yōu)化與參數(shù)估計集成優(yōu)化方法的實現(xiàn)和網(wǎng)絡(luò)信息傳輸,借助于動態(tài)系統(tǒng)集成優(yōu)化控制技術(shù)和網(wǎng)絡(luò)自動化技術(shù)可實現(xiàn)網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制,可以基于局域網(wǎng)或Intemet實現(xiàn)。
2.網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制的特征 對一個動態(tài)優(yōu)化控制方法,除了給出優(yōu)化算法,還需要對其性能進(jìn)行分析,只有這樣才能保證優(yōu)化方法的實施。網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法的性能包括實時性、最優(yōu)性、收斂性及其魯棒性等。
1).實時性 在引人網(wǎng)絡(luò)之前,針對跨區(qū)域的復(fù)雜系統(tǒng),其優(yōu)化控制的實施是很困難的,即使能夠,其實時性也難以保證。網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制方法由于借助于計算機(jī)網(wǎng)絡(luò)技術(shù)來實施集成優(yōu)化控制,可以較好地解決跨區(qū)域復(fù)雜系統(tǒng)集成優(yōu)化控制的實時性問題。
2).最優(yōu)性 算法最優(yōu)性是指在算法收斂的情況下,收斂解是否實際系統(tǒng)的最優(yōu)解。對于網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制方法,在最優(yōu)解存在且唯一等假設(shè)條件下,若算法收斂,則收斂解滿足最優(yōu)性必要條件,即所得優(yōu)化解是實際系統(tǒng)的真實最優(yōu)解。
3).收斂性 網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制方法需要實施,首先要求其優(yōu)化控制算法是收斂的,收斂性就是研究算法收斂的條件,針對不同的算法其收斂性條件有所不同。對于網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法,其優(yōu)化的框架沒有改變,只是引人了網(wǎng)絡(luò)回路,利用算法映射及壓縮映射原理,通過分析可以獲得保證優(yōu)化算法收斂的條件。
4).魯棒性 網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制方法的魯棒性問題是指在存在這樣那樣擾動的情況下,優(yōu)化算法保持其收斂性,并收斂到最優(yōu)解的能力。網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法在不需要實際過程的精確數(shù)學(xué)模型的情況下可以獲得實際系統(tǒng)的真實最優(yōu)解,對模型的結(jié)構(gòu)和參數(shù)具有較強(qiáng)的魯棒性。
網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法是一種基于網(wǎng)絡(luò)環(huán)境下的集成優(yōu)化控制方法,計算機(jī)網(wǎng)絡(luò)的信息的安全問題必然影響到系統(tǒng)集成優(yōu)化控制的實施。因此,對網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制中的信息安全問題及其對策進(jìn)行分析和研究是十分必要的,只有這樣才能保證網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制的順利實施。網(wǎng)絡(luò)化系統(tǒng)集成優(yōu)化控制中的信息安全問題可以借助于計算機(jī)網(wǎng)絡(luò)的信息安全對策予以解決。
網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法為解決區(qū)域性復(fù)雜系統(tǒng)的優(yōu)化控制提供了一種新思路,該方法具有以下優(yōu)越性:
1)由于網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法本質(zhì)是采用動態(tài)大系統(tǒng)的DISOPE遞階優(yōu)化方法,這樣就使得網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制在不需要復(fù)雜系統(tǒng)的精確數(shù)學(xué)模型的情況下,就可以獲得實際系統(tǒng)的真實最優(yōu)解;
2)網(wǎng)絡(luò)化系統(tǒng)的集成優(yōu)化控制方法為解決跨區(qū)域性的復(fù)雜系統(tǒng)的優(yōu)化控制提供了一種可靠的實現(xiàn)途徑和形式。同時由于網(wǎng)絡(luò)自動化技術(shù)的發(fā)展和網(wǎng)絡(luò)信息傳輸實時性的提高,使得實時地解決區(qū)域性的復(fù)雜系統(tǒng)的優(yōu)化控制成為可能。
為了實現(xiàn)對直線電機(jī)運動的高精度控制,系統(tǒng)采用全閉環(huán)的控制策略,但在系統(tǒng)的速度環(huán)控制中,因為負(fù)載直接作用在電機(jī)而產(chǎn)生的擾動,如果僅采用 PID 控制,則很難滿足系統(tǒng)的快速響應(yīng)需求。由于模糊控制技術(shù)具有適用范圍廣、對時變負(fù)載具有一定的魯棒性的特點,而直線電機(jī)伺服控制系統(tǒng)又是一種要求要具有快速響應(yīng)性并能夠在極短時間內(nèi)實現(xiàn)動態(tài)調(diào)節(jié)的系統(tǒng),所以本文考慮在速度環(huán)設(shè)計了PID模糊控制器,利用模糊控制器對電機(jī)的速度進(jìn)行控制,并同電流環(huán)和位置環(huán)的經(jīng)典控制策略一起來實現(xiàn)對直線電機(jī)的精確控制。
模糊控制器包括四部分:
(1)模糊化。主要作用是選定模糊控制器的輸入量,并將其轉(zhuǎn)換為系統(tǒng)可識別的模糊量,具體包含以下三步:
第一,對輸入量進(jìn)行滿足模糊控制需求的處理;
第二,對輸入量進(jìn)行尺度變換;
第三,確定各輸入量的模糊語言取值和相應(yīng)的隸屬度函數(shù)。
(2)規(guī)則庫。根據(jù)人類專家的經(jīng)驗建立模糊規(guī)則庫。模糊規(guī)則庫包含眾多控制規(guī)則,是從實際控制經(jīng)驗過渡到模糊控制器的關(guān)鍵步驟。
(3)模糊推理。主要實現(xiàn)基于知識的推理決策。
(4)解模糊。主要作用是將推理得到的控制量轉(zhuǎn)化為控制輸出。
檐高是指設(shè)計室外地坪至檐口滴水線的高度,有女兒墻的算至女兒墻的頂,突出主體建筑屋頂?shù)碾娞蓍g、水箱間等不計入檐口高度之內(nèi)。這是河北定額的規(guī)定
“模糊預(yù)算”是針對“綜合預(yù)算”與“二級精算預(yù)算”而來的,它沒有上述預(yù)算報價中的材料品牌、規(guī)格、型號,沒有工藝制作說明,甚至項目以及工程量都標(biāo)注得不很清楚,其報價也只能是一個大概的估算。 “模糊預(yù)算”一...
圖紙上怎么才算為一跨,柱與柱,主梁與主梁,我是知道的,框架梁是為主梁,非框架梁是為次梁,這樣理解對嗎,但是圖紙上KL與L相交時也是算成一跨的,那么跟定義有矛盾啊,還是我理解有誤。二層梁配筋圖里怎么會出...
利用模糊數(shù)學(xué)的基本思想和理論的控制方法。在傳統(tǒng)的控制領(lǐng)域里,控制系統(tǒng)動態(tài)模式的精確與否是影響控制優(yōu)劣的最主要關(guān)鍵,系統(tǒng)動態(tài)的信息越詳細(xì),則越能達(dá)到精確控制的目的。然而,對于復(fù)雜的系統(tǒng),由于變量太多,往往難以正確的描述系統(tǒng)的動態(tài),于是工程師便利用各種方法來簡化系統(tǒng)動態(tài),以達(dá)成控制的目的,但卻不盡理想。換言之,傳統(tǒng)的控制理論對于明確系統(tǒng)有強(qiáng)而有力的控制能力,但對于過于復(fù)雜或難以精確描述的系統(tǒng),則顯得無能為力了。因此便嘗試著以模糊數(shù)學(xué)來處理這些控制問題。
“模糊”是人類感知萬物,獲取知識,思維推理,決策實施的重要特征?!澳:北取扒逦彼鶕碛械男畔⑷萘扛螅瑑?nèi)涵更豐富,更符合客觀世界。
Zadeh創(chuàng)立的模糊數(shù)學(xué),對不明確系統(tǒng)的控制有極大的貢獻(xiàn),自七十年代以后,一些實用的模糊控制器的相繼出現(xiàn),使得我們在控制領(lǐng)域中又向前邁進(jìn)了一大步,下面本文將對模糊控制理論做一番淺介。
模糊邏輯控制(Fuzzy Logic Control)簡稱模糊控制(Fuzzy Control),是以模糊集合論、模糊語言變量和模糊邏輯推理為基礎(chǔ)的一種計算機(jī)數(shù)字控制技術(shù)。1965年,美國的L.A.Zadeh創(chuàng)立了模糊集合論;1973年他給出了模糊邏輯控制的定義和相關(guān)的定理。1974年,英國的E.H.Mamdani首次根據(jù)模糊控制語句組成模糊控制器,并將它應(yīng)用于鍋爐和蒸汽機(jī)的控制,獲得了實驗室的成功。這一開拓性的工作標(biāo)志著模糊控制論的誕生。
模糊控制實質(zhì)上是一種非線性控制,從屬于智能控制的范疇。模糊控制的一大特點是既有系統(tǒng)化的理論,又有大量的實際應(yīng)用背景。模糊控制的發(fā)展最初在西方遇到了較大的阻力;然而在東方尤其是日本,得到了迅速而廣泛的推廣應(yīng)用。近20多年來,模糊控制不論在理論上還是技術(shù)上都有了長足的進(jìn)步,成為自動控制領(lǐng)域一個非?;钴S而又碩果累累的分支。其典型應(yīng)用涉及生產(chǎn)和生活的許多方面,例如在家用電器設(shè)備中有模糊洗衣機(jī)、空調(diào)、微波爐、吸塵器、照相機(jī)和攝錄機(jī)等;在工業(yè)控制領(lǐng)域中有水凈化處理、發(fā)酵過程、化學(xué)反應(yīng)釜、水泥窯爐等;在專用系統(tǒng)和其它方面有地鐵靠站停車、汽車駕駛、電梯、自動扶梯、蒸汽引擎以及機(jī)器人的模糊控制。
選擇的控制變量要具有系統(tǒng)特性??刂谱兞窟x擇是否正確,對系統(tǒng)的性能將有很大的影響。例如做位置控制時,系統(tǒng)輸出與設(shè)定值的誤差量就可以當(dāng)做模糊控制器的輸入變量。一般而言,可選用系統(tǒng)輸出、輸出變化量、輸出誤差、輸出誤差變化量及輸出誤差量總和等,作為模糊控制器的語言變量,具體如何選擇還有賴于工程師對于系統(tǒng)的了解及其專業(yè)知識。因此,經(jīng)驗和工程知識在選擇控制變量時扮演著相當(dāng)重要的角色。
控制變量確定之后,接下來就是根據(jù)經(jīng)驗寫出控制規(guī)則。在做成模糊控制規(guī)則之前,首先必需對模糊控制器的輸入和輸出變量空間做模糊分割。例如輸入空間只有單一變量時,可以用三個或五個模糊集合對空間做模糊分割,劃分成三個或五個區(qū)域。輸入空間為二元變量時,采用四條模糊控制規(guī)則,可以將空間分成四個區(qū)域。
模糊分割時各領(lǐng)域間的重疊的程度影響控制的性能;一般而言,模集合重疊的程度并沒有明確的決定方法,大都依靠模擬和實驗的調(diào)整決定分割方式,不過有些報告提出大約1/3~1/2最為理想。重疊部份的大小意味著模糊控制規(guī)則間模糊的程度,因此模糊分割是模糊控制的重要特征。
控制規(guī)則是模糊控制器的核心,它的正確與否直接影響到控制器的性能,其數(shù)目的多寡也是衡量控制器性能的一個重要因素,下面對控制規(guī)則做進(jìn)一步的探討。
模糊控制規(guī)則的取得方式:
(1) 專家的經(jīng)驗和知識
模糊控制也稱為控制系統(tǒng)中的[4]專家系統(tǒng),專家的經(jīng)驗和知識在其設(shè)計上有余力的線索。人類在日常生活常中判斷事情,使用語言定性分析多于數(shù)值定量分析;而模糊控制規(guī)則提供了一個描述人類的行為及決策分析的自然架構(gòu);專家的知識通??捎胕f….then的型式來表述。
藉由詢問經(jīng)驗豐富的專家,獲得系統(tǒng)的知識,并將知識改為if….then的型式,如此便可構(gòu)成模糊控制規(guī)則。除此之外,為了獲得最佳的系統(tǒng)性能,常還需要多次使用[5]試誤法,以修正模糊控制規(guī)則。
(2) 操作員的操作模式
現(xiàn)在流行的專家系統(tǒng),其想法只考慮知識的獲得。專家可以巧妙地操作復(fù)雜的控制對象,但要將專家的訣竅加以邏輯化并不容易,這就需要在控制上考慮技巧的獲得。許多工業(yè)系統(tǒng)無法以一般的控制理論做正確的控制,但是熟練的操作人員在沒有數(shù)學(xué)模式下,卻能夠成功地控制這些系統(tǒng):這啟發(fā)我們記錄操作員的操作模式,并將其整理為if….then的型式,可構(gòu)成一組控制規(guī)則。
(3) 學(xué)習(xí)
為了改善模糊控制器的性能,必須讓它有自我學(xué)習(xí)或自我組織的能力,使模糊控制器能夠根據(jù)設(shè)定的目標(biāo),增加或修改模糊控制規(guī)則。
模糊控制規(guī)則的形式主要可分為二種:
(1) 狀態(tài)評估模糊控制規(guī)則
狀態(tài)評估(state evaluation)模糊控制規(guī)則類似人類的直覺思考,它被大多數(shù)的模糊控制器所使用,其型式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y is Ci
其中x1,x2,…….,xn及y為語言變量或稱為模糊變量,代表系統(tǒng)的態(tài)變量和控制變量;Ai1,Ai2,….,Ain及Ci為語言值,代表論域中的[6]模糊集合。該形式還有另一種表示法,是將后件部改為系統(tǒng)狀態(tài)變量的函數(shù),其形式如下:
Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain
then y=f1(x1,x2,…….,xn)
(2)目標(biāo)評估模糊控制規(guī)則
目標(biāo)評估(object evaluation)模糊控制規(guī)則能夠評估控制目標(biāo),并且預(yù)測未來控制信號,其形式如下:
Ri:if(U is Ci→(x is A1 and y is B1))then U is Ci
實際應(yīng)用模糊控制時,最初的問題是控制器的設(shè)計,即如何設(shè)計模糊控制法則。到目前為止模糊控制還沒能像傳統(tǒng)的控制理論一樣,借由一套發(fā)展完整的理論推導(dǎo)來設(shè)計。下面簡單介紹一下其設(shè)計概念:
在單輸入和單輸出的定值控制時間響應(yīng)圖中,若使用狀態(tài)評估模糊控制規(guī)則的形式,前件部變量為輸出的誤差E和在一個取樣周期內(nèi)E的變化量CE,后件部變量為控制器輸出量U的變化量CU。則誤差、誤差變化量及控制輸出變化量的表示為:
其中E表誤差,R表設(shè)定值,Y表系統(tǒng)輸出,U表控制輸出,下標(biāo)n表在時刻n時的狀態(tài)。由此可知,誤差變化量CE是隨輸出Y的斜率的符號變號,當(dāng)輸出上升時,CE<0, 下降時CE>0。
本文所設(shè)計的模糊控制器之輸出輸入關(guān)系為:
E,CE→CU
在一般控制的計算法上稱為速度型,這是由于其輸出為U對時間的微分,相當(dāng)于速度的CU。在構(gòu)造上也可采用以U為后件部變量的位置型,但前件部變量必需改用E的積分值。
由于由E與CE推論CU的構(gòu)造中,CU與E的關(guān)系恰巧相當(dāng)于積分關(guān)系U(t)=Ki∫E(t)dt,而CU與CE的關(guān)系相當(dāng)于比例關(guān)系U(t)=KpE(t)的緣故,所以又稱為Fuzzy PI控制。
設(shè)計模糊控制規(guī)則時,是在所設(shè)想對控制對象各階段的反應(yīng),記述采取哪一種控制比較好;首先選擇各階段的特征點,記錄在模糊控制規(guī)則的前件部,然后思考在該點采取的動作,記錄在模糊控制規(guī)則的后件部。例如,在第一循環(huán)之a(chǎn)1點附近,誤差為正且大,但誤差變化量幾乎是零,可以記為“E is PB and CE is ZO”在此點附近需要很大的控制輸出,記為”CU is PB”;同樣地,對于b1點、c1點、d1點等的附近,可分別得到如下的控制規(guī)則:
a1:If E is PB and CE is ZO then CU is PB
b1:If E is ZO and CE is NB then XU is NB
c1:If E is NB and CE is ZO then CU is NB
d1:If E is ZO and CE is PB then CU is PB
在第二循環(huán)之a(chǎn)2,b2等之附近,其E和CE的絕對值比a1,b1點中之值相對減少,所以其CU值相對地也較小,其控制規(guī)則如下:
a2:If E is PM and CE is ZO then CU is PM
b2:If E is ZO and CE is NM then CU is NM
表3.2為依上述程序所構(gòu)成的13條控制規(guī)則,其中縱列為E值,橫列為CE值,表中所列之值為控制輸出變化量CU值。由表3.2可知規(guī)則數(shù)最多可為49條,此表只使用了其中13條控制規(guī)則,設(shè)計者可依實際需要自行加減規(guī)則之?dāng)?shù)量,如19條、31條等等(表3.3,3.4所示),以改系統(tǒng)之響應(yīng)。
Mamdani教授最初所用的模糊變量分為連續(xù)型和離散型兩種型式,因此隸屬度函數(shù)的型式也可以分為連續(xù)型與離散型兩種。由于語言變量及相對應(yīng)隸屬度函數(shù)選擇的不同,將形成許多不同的模糊控制器架構(gòu);下面將對各隸屬度函數(shù)的型式加以介紹:
1. 連續(xù)型隸屬度函數(shù)
模糊控制器中常見的連續(xù)型隸屬度函數(shù)有下列三種:
(1)吊鐘形
(2)三角形
(3)梯形
在式中參數(shù)a為隸屬度函數(shù)中隸屬度為1時的x值,參數(shù)W為隸屬度函數(shù)涵蓋論域?qū)捳某潭?。而NB,NM,NS,ZO,PS,PM,PB等是論域中模糊集合的標(biāo)記,其意義如下所示:
NB=負(fù)方向大的偏差(Negative Big)
NM=負(fù)方向中的偏差(Negative Medium)
NS=負(fù)方向小的偏差(Negative Small)
ZO=近于零的偏差(Zero)
PS=正方向小的偏差(Positive Small)
PM=正方向中的偏差(Positive Medium)
PB=正方向大的偏差(Positive Big)
將模糊集合的全集合正規(guī)化為區(qū)間〔-1,1〕,在模糊控制上,使用標(biāo)準(zhǔn)化的模糊變量,其全集也常正規(guī)化,這時的正規(guī)化常數(shù)(亦稱為增益常數(shù)),也是在設(shè)計模糊控制器時必須決定的重要參數(shù)。
2. 離散型隸屬度函數(shù)
Mamdani教授除了使用連續(xù)型全集合之外,也使用了由13個元素所構(gòu)成的離散合。由于用微處理機(jī)計算時使用整數(shù)比用〔0,1〕之間的小數(shù)更方便,模糊集合的隸屬度均以整數(shù)表示,如表3.1所示。
模糊控制理論發(fā)展之初,大都采用吊鐘形的隸屬度函數(shù),而近幾年幾乎都已改用三角形的隸屬度函數(shù),這是由于三角形隸屬度函數(shù)計算比較簡單,性能與吊鐘形幾乎沒有差別。
1.模糊控制的設(shè)計尚缺乏系統(tǒng)性,這對復(fù)雜系統(tǒng)的控制是難以奏效的。難以建立一套系統(tǒng)的模糊控制理論,以解決模糊控制的機(jī)理、穩(wěn)定性分析、系統(tǒng)化設(shè)計方法等一系列問題;
2.如何獲得模糊規(guī)則及隸屬函數(shù)即系統(tǒng)的設(shè)計辦法,完全憑經(jīng)驗進(jìn)行;
3.信息簡單的模糊處理將導(dǎo)致系統(tǒng)的控制精度降低和動態(tài)品質(zhì)變差。若要提高精度就必然增加量化級數(shù),導(dǎo)致規(guī)則搜索范圍擴(kuò)大,降低決策速度,甚至不能進(jìn)行實時控制;
4.如何保證模糊控制系統(tǒng)的穩(wěn)定性即如何解決模糊控制中關(guān)于穩(wěn)定性和魯棒性問題還有待解決。2100433B
格式:pdf
大?。?span id="zvtdln7" class="single-tag-height">401KB
頁數(shù): 5頁
評分: 4.5
介紹了制冷機(jī)組變負(fù)荷運行控制方法的研究進(jìn)展。設(shè)計了制冷機(jī)組的模糊控制器,在變負(fù)荷運行工況下進(jìn)行了實驗,模糊控制器具有良好的控制效果,部分負(fù)荷下制冷機(jī)組的制冷性能系數(shù)有所提高。
格式:pdf
大小:401KB
頁數(shù): 6頁
評分: 4.8
以恒溫空調(diào)系統(tǒng)為控制對象,對神經(jīng)模糊控制器、常規(guī)模糊控制器和PID控制器進(jìn)行了數(shù)字仿真,并用單純形法對控制比例因子進(jìn)行了參數(shù)尋優(yōu),獲得了最優(yōu)參數(shù)和動態(tài)響應(yīng)曲線;通過對神經(jīng)模糊控制器的優(yōu)化學(xué)習(xí),大大提高了神經(jīng)模糊控制器的控制精度和穩(wěn)定性,其性能優(yōu)于最優(yōu)化的PID控制器和最優(yōu)化的常規(guī)模糊控制器,能有效地滿足溫度控制要求,并具有較好的魯棒性;由于神經(jīng)模糊控制器具有模糊控制和神經(jīng)網(wǎng)絡(luò)的智能,經(jīng)過優(yōu)化學(xué)習(xí)后,它具有良好的控制性能和自適應(yīng)能力。
模糊穩(wěn)健優(yōu)化設(shè)計是指在一般模糊優(yōu)化設(shè)計的基礎(chǔ)上,計入設(shè)計變量和噪聲的波動對模糊約束條件穩(wěn)健性影響的模糊優(yōu)化設(shè)計尋優(yōu)思想本文。
"模糊穩(wěn)健優(yōu)化設(shè)計" 英文對照
firm fuzzy optimal design; fuzzy robust optimum design;
"模糊穩(wěn)健優(yōu)化設(shè)計" 在學(xué)術(shù)文獻(xiàn)中的解釋
在一般模糊優(yōu)化設(shè)計的基礎(chǔ)上,計入設(shè)計變量和噪聲的波動對模糊約束條件穩(wěn)健性的影響,這種模糊優(yōu)化設(shè)計尋優(yōu)思想本文稱為模糊穩(wěn)健優(yōu)化設(shè)計。應(yīng)用前述模糊約束條件穩(wěn)健性控制準(zhǔn)則,建立的模型就稱為模糊穩(wěn)健優(yōu)化設(shè)計數(shù)學(xué)模型。2100433B
隨著模糊控制在工業(yè)過程中的廣泛應(yīng)用,模糊控制規(guī)則的優(yōu)化和簡化越來越受到人們的重視。最初,模糊控制規(guī)則是由專家確定的,但由于高維模糊控制器會遇到"規(guī)則爆炸"的問題,即傳統(tǒng)模糊控制器規(guī)則數(shù)量一般隨輸入變量的個數(shù)呈指數(shù)增長關(guān)系。對此作了重新定義,將之稱為參數(shù)效率問題。并總結(jié)了解決此問題的幾種方式:①規(guī)則去除方式;②分層遞階模糊系統(tǒng)結(jié)構(gòu)方式;③并規(guī)則結(jié)構(gòu)方式;④智能算法優(yōu)化。
用智能算法優(yōu)化解決"規(guī)則爆炸"問題的主要思想是:用一種智能優(yōu)化算法對于已經(jīng)定義的完備的控制規(guī)則進(jìn)行抽取和過濾,將抽取的控制規(guī)則應(yīng)用于控制實際的系統(tǒng),同時把實際系統(tǒng)的性能指標(biāo)作為抽取的控制規(guī)則的性能指標(biāo)反饋到智能算法中,算法根據(jù)這個反饋信息進(jìn)行下一次的抽取,循環(huán)進(jìn)行這個過程,直到算法收斂。
利用遺傳算法對已有的完備的模糊控制規(guī)則進(jìn)行了過濾,取得較好的控制效果。這說明在已有的控制規(guī)則表中存在著大量的冗余的和對控制效果影響較小的信息,這些信息浪費了計算機(jī)的存儲資源,影響了推理的速度和控制的實時性,有必要對這些信息進(jìn)行過濾。但應(yīng)用遺傳算法過濾規(guī)則首先要把規(guī)則表進(jìn)行編碼(二進(jìn)制編碼或者實數(shù)編碼),把編碼后的規(guī)則表看成單個染色體,再對染色體群體進(jìn)行選擇,交叉,變異等操作,最后算法收斂后,得到針對已定義的性能指標(biāo)的最優(yōu)的規(guī)則表染色體。這種在編碼基礎(chǔ)上的操作,只有解碼后才會知道將產(chǎn)生什么樣的規(guī)則表,所以算法本身的機(jī)制不利于在產(chǎn)生規(guī)則表的過程中加入對規(guī)則表的約束條件。這種方法的結(jié)果有可能出現(xiàn)規(guī)則表不連續(xù)的情況,使得優(yōu)化出的模糊控制規(guī)則表只能保證在特定的性能指標(biāo)(如固定初始條件時系統(tǒng)的性能指標(biāo))意義下的最優(yōu)或者可行,卻并不具有魯棒性,即在系統(tǒng)不同的初始條件下,控制效果差別很大。
為了解決上述問題,本文將模糊控制規(guī)則表的抽取和過濾表示為一個典型的離散組合優(yōu)化問題(TSP),并利用蟻群算法在解決離散的組合優(yōu)化問題中的強(qiáng)大優(yōu)勢對模糊控制規(guī)則表進(jìn)行抽取。但是抽取模糊控制規(guī)則表的問題與TSP問題雖然具有相似性,但卻并不完全一樣,需要對蟻群算法進(jìn)行改造:
1)用蟻群算法解決模糊控制規(guī)則的抽取不能定義類似TSP問題中的啟發(fā)式信息(在TSP問題中是城市之間距離的倒數(shù)),因此在算法中沒有應(yīng)用啟發(fā)式信息,在進(jìn)行規(guī)則選擇的過程僅利用了信息素濃度作為指導(dǎo)性原則。
2)為了防止產(chǎn)生的模糊控制規(guī)則表不連續(xù),為每一個規(guī)則定義了一個窗口鄰域,在抽取規(guī)則的過程中保證每一規(guī)則的鄰域內(nèi)至少被選中一條規(guī)則。我們稱這樣的蟻群算法為帶有窗口的蟻群算法。
3)所定義的性能指標(biāo)綜合考慮了跟蹤誤差和響應(yīng)時間的因素。應(yīng)用此算法優(yōu)化后的FUZZY-PD控制器控制小車倒擺取得了較好的控制效果:我們分別在改變初始條件和給小車加入擾動的情況下對抽取的控制規(guī)則表進(jìn)行了仿真,都取得了較好的控制效果,說明這樣抽取模糊控制規(guī)則表具有較好的魯棒性。
1.蟻群算法基本思想
蟻群算法最初是由Dorigo等人提出,是一種求解組合優(yōu)化問題的新型通用啟發(fā)式方法。主要是受到蟻群搜索食物的過程的啟發(fā)。通過對蟻群行為的研究,人們發(fā)現(xiàn)雖然其單個昆蟲的行為非常簡單,但由單個簡單的個體所組成的群體卻表現(xiàn)出極其復(fù)雜的行為;原因是螞蟻個體之間通過一種稱之為外激素的物質(zhì)進(jìn)行信息傳遞;螞蟻在運動過程中,能夠在它所經(jīng)過的路徑上留下該種物質(zhì),而且螞蟻在運動過程中能夠感知這種物質(zhì),并以此指導(dǎo)自己的運動方向。因此,由大量螞蟻組成的蟻群的集體行為便表現(xiàn)出一種信息正反饋現(xiàn)象:某一路徑上走過的螞蟻越多,則后來者選擇該路徑的概率就越大。螞蟻個體之間就是通過這種信息的交流達(dá)到搜索食物的目的。
2.用蟻群算法抽取模糊控制規(guī)則
首先將模糊控制規(guī)則問題描述為一個離散的組合優(yōu)化問題,我們所要作的工作實際上是從已有的完備的控制規(guī)則(49條規(guī)則)中抽取固定數(shù)目的不完備控制規(guī)則(本文中25條規(guī)則),同時達(dá)到較好的控制效果。和TSP問題相對應(yīng),就是從49個"城市"按照性能指標(biāo)最優(yōu)的方式選出25個"城市",但是和TSP問題不同的是,我們只是抽取"城市",而抽取出的"城市"并不構(gòu)成閉環(huán)。所以我們可以在解決問題的過程中把問題簡單的表示為簡化了的TSP問題。將應(yīng)用于TSP問題的蟻群算法進(jìn)行改造,使之能夠與模糊控制規(guī)則的優(yōu)選相結(jié)合。首先將規(guī)則表進(jìn)行編號,并定義規(guī)則的鄰域窗口。本文采用7×7的規(guī)則表,表中第一行的規(guī)則編號為1到7,第二行為8到14,以此類推,一共n=49條規(guī)則,第i條規(guī)則對應(yīng)著規(guī)則表第(i-1)%7 1行,(i-1)/7 1列,%為取余操作,/為整除操作。定義規(guī)則之間的距離,設(shè)規(guī)則A在規(guī)則表中位于第i行,第j列,規(guī)則B在規(guī)則表中位于第i1行,第j1列,則規(guī)則A和規(guī)則B之間的距離為(i-i1) (j-j1),定義每一條規(guī)則周圍的規(guī)則為距離它本身小于2的規(guī)則,每一條規(guī)則有一個窗口存儲這些離它最近的規(guī)則。
在程序運行開始,先將蟻群隨機(jī)分布于規(guī)則表上。在迭代過程中,螞蟻每次從這n個規(guī)則中按每條規(guī)則的選取概率選取下1條規(guī)則。每只螞蟻選中的規(guī)則列入該只螞蟻的規(guī)則禁忌表中,在以后的選取中不再考慮。直到每只螞蟻都選出l(l為指定的預(yù)選規(guī)則數(shù),l
表3規(guī)則表事例
1
2
3
4
5
6
7
1
-3
100
-3
-3
100
-1
100
2
-3
-3
-3
100
-1
0
100
3
100
100
100
100
0
100
100
4
100
-2
-1
0
100
100
3
5
-2
-1
100
1
100
3
100
6
-1
0
100
2
100
3
3
7
0
100
100
100
3
100
100
其中100表示所對應(yīng)得規(guī)則沒有選中。
當(dāng)一次循環(huán)完成后,從所有螞蟻形成的規(guī)劃方案中選擇具有最小目標(biāo)函數(shù)值的規(guī)劃方案,并與當(dāng)前保存的最優(yōu)方案進(jìn)行比較。如果新方案比當(dāng)前保存的最優(yōu)方案進(jìn)行比較。如果新方案比當(dāng)前保存的最優(yōu)方案還要好,那么用新方案代替當(dāng)前保存的方案;否則維持當(dāng)前的最優(yōu)方案。重復(fù)上述過程直至達(dá)到最大迭代次數(shù)。
從上述的用蟻群算法優(yōu)化控制規(guī)則表的操作過程可以看出,在形成一個可行解(即一個規(guī)則表)的過程中,螞蟻是一條規(guī)則接著一條規(guī)則的選取,直到選出一個規(guī)則集合,構(gòu)成一個規(guī)則表,這和遺傳算法將規(guī)則表編碼后看成一個染色體操作顯然是不同的,這樣操作有利于在形成規(guī)則表的過程中逐一的審視構(gòu)成規(guī)則表的每一條規(guī)則,這就給對規(guī)則引入約束條件提供了可操作性。在本文中,為了避免產(chǎn)生的控制規(guī)則不連續(xù),加入的約束條件為每一條規(guī)則的鄰域窗口內(nèi)至少有一條規(guī)則被選中。
為模擬實際螞蟻的行為,首先引進(jìn)如下記號:設(shè)m是蟻群中螞蟻的數(shù)量,τ j(t)表示t時刻在j規(guī)則節(jié)點上殘留的信息量.初始時刻,各條規(guī)則上信息量相等,設(shè)τ j(0)=C(C為常數(shù))。螞蟻k(k=1,2,...,m)在運動過程中,根據(jù)各條規(guī)則節(jié)點上的信息量決定轉(zhuǎn)移方向,p j(t)表示在t時刻螞蟻k由當(dāng)前位置轉(zhuǎn)移到位置j值得注意的是本文中的蟻群算法和傳統(tǒng)的應(yīng)用于TSP問題的蟻群算法不同的是:并沒有定義啟發(fā)式信息(在TSP問題中為城市間距離的倒數(shù))。原因是,對于文中的問題不存在這樣的啟發(fā)式信息。在文獻(xiàn)[7]中提到,由于信息激素在算法的開始時設(shè)為同等強(qiáng)度的隨機(jī)值,在算法開始階段,信息激素并不能很好的指導(dǎo)螞蟻找到好的初始解,也可能找到非常壞的解,這樣對算法就產(chǎn)生了錯誤的收斂導(dǎo)向,而啟發(fā)式信息的主要作用正是在算法開始階段導(dǎo)引螞蟻向好的解上留下信息素。所以當(dāng)算法加入了局部搜索的機(jī)制時,認(rèn)為啟發(fā)式信息沒有必要也是合理的。這樣既提高了計算的速度(在TSP問題中,啟發(fā)式信息在城市間的轉(zhuǎn)移概率中是乘積運算),又為蟻群算法應(yīng)用在不能或者不易定義啟發(fā)式信息的問題上提供了理論依據(jù)。在本文的問題中,啟發(fā)式信息是不必要的。原因有二,一是本文的問題沒法定義啟發(fā)式信息,二是本文中定義的約束條件可以認(rèn)為是一種局部搜索機(jī)制(保證規(guī)則表連續(xù)的局部搜索機(jī)制),定義啟發(fā)式信息并不是十分必要的。
隨著機(jī)器人技術(shù)的迅猛發(fā)展,機(jī)器人承擔(dān)的任務(wù)更加復(fù)雜多樣,傳統(tǒng)的檢測手段往往面臨著檢測范圍的局限性和檢測手段的單一性.視覺伺服控制利用視覺信息作為反饋,對環(huán)境進(jìn)行非接觸式的測量,具有更大的信息量,提高了機(jī)器人系統(tǒng)的靈活性和精確性,在機(jī)器人控制中具有不可替代的作用.
視覺伺服控制系統(tǒng)是指使用視覺反饋的控制系統(tǒng),其控制目標(biāo)是將任務(wù)函數(shù) e( s?s( m( t) ;a))調(diào)節(jié)到最小,其中 s;s分別為系統(tǒng)的當(dāng)前狀態(tài)和期望狀態(tài).與常規(guī)控制不同的是, s基于圖像信息 m( t)和系統(tǒng)參數(shù) a構(gòu)造,比傳統(tǒng)的傳感器信息具有更高的維度和更大的信息量,提高了機(jī)器人系統(tǒng)的靈活性.
視覺伺服系統(tǒng)通常由視覺系統(tǒng)、控制策略和機(jī)器人系統(tǒng)組成,其中視覺系統(tǒng)通過圖像獲取和視覺處理得到合適的視覺反饋信息,再由控制器得到機(jī)器人的控制輸入.在應(yīng)用中,需要根據(jù)任務(wù)需求設(shè)計視覺伺服系統(tǒng)的實現(xiàn)策略.從這三個方面對視覺伺服中存在的主要問題和研究進(jìn)展進(jìn)行綜述.
視覺伺服控制涉及計算機(jī)視覺、機(jī)器人技術(shù)和控制理論等多個領(lǐng)域,國內(nèi)外學(xué)者在過去20余年中進(jìn)行了廣泛的研究.Hutchinson等的三篇經(jīng)典論文對視覺伺服控制的研究起到了引導(dǎo)作用.近年來,Staniak等和Azizian等分別對視覺伺服系統(tǒng)的結(jié)構(gòu)及其在醫(yī)療機(jī)器人中的應(yīng)用進(jìn)行了綜述.在國內(nèi)的研究中,林靖等、趙清杰等、薛定宇等、王麟琨等、方勇純分別對視覺伺服控制進(jìn)行了綜述,總結(jié)了經(jīng)典的視覺伺服控制方法.
隨著計算機(jī)視覺和機(jī)器人技術(shù)的飛速發(fā)展,視覺伺服控制的研究也有了顯著的進(jìn)步.相比于以往的綜述,本文重點分析了視覺伺服系統(tǒng)設(shè)計中存在的主要問題及相應(yīng)的解決方案.如圖1所示,設(shè)計視覺伺服系統(tǒng)時主要需要考慮視覺系統(tǒng)、控制策略以及實現(xiàn)策略三個方面.在視覺系統(tǒng)方面,本文首先介紹了視覺系統(tǒng)的構(gòu)造方法,并對動態(tài)性能的提升和噪聲的處理進(jìn)行了討論.在控制策略方面,主要針對視覺伺服系統(tǒng)中模型不確定性和約束的處理進(jìn)行了分析.另外,考慮到視覺伺服系統(tǒng)的可實現(xiàn)性和靈活性,文中對系統(tǒng)的實現(xiàn)策略進(jìn)行了總結(jié).最后,基于當(dāng)前的研究進(jìn)展,對未來的研究方向進(jìn)行了展望.
首先介紹視覺系統(tǒng)的組成,然后對視覺系統(tǒng)動態(tài)性能的優(yōu)化和噪聲的處理方法進(jìn)行分析和總結(jié).
1.1視覺系統(tǒng)的組成
視覺系統(tǒng)由圖像獲取和視覺處理兩部分組成,圖像的獲取是利用相機(jī)模型將三維空間投影到二維圖像空間的過程,而視覺處理則是利用獲取的圖像信息得到視覺反饋的過程.
1.1.1相機(jī)模型
基本的相機(jī)模型主要包括針孔模型和球面投影模型,統(tǒng)一化模型是對球面模型的推廣,將各種相機(jī)的圖像映射到歸一化的球面上.此處需要強(qiáng)調(diào)的是針孔模型的\相機(jī)撤退"問題和球面模型的旋轉(zhuǎn)不變性.針孔模型的\相機(jī)撤退"問題是指當(dāng)旋轉(zhuǎn)誤差較大時,要使特征點在圖像中沿直線運動到目標(biāo),相機(jī)會先旋轉(zhuǎn)著遠(yuǎn)離目標(biāo),再旋轉(zhuǎn)著接近目標(biāo),在工作空間的路徑是曲折的.對此可以使用極坐標(biāo)系或圓柱坐標(biāo)系來處理.球面模型的旋轉(zhuǎn)不變性是指球的旋轉(zhuǎn)對物體在球面上投影的形狀是沒有影響的,一方面可以避免\相機(jī)撤退"問題,同時也方便設(shè)計平移和旋轉(zhuǎn)解耦的誤差向量.統(tǒng)一化模型的吸引力在于可以將各種相機(jī)的圖像映射到統(tǒng)一的模型,從而在設(shè)計控制器時不需要考慮具體的相機(jī)模型,增強(qiáng)了系統(tǒng)的可擴(kuò)展性.另外也可以將常規(guī)的機(jī)器人傳感器映射到球面,如重力向量、磁場向量或角速度等,從而可以設(shè)計多傳感器信息融合的機(jī)器人控制器.
1.1.2視覺反饋
視覺伺服中的視覺反饋主要有基于位置、圖像特征和多視圖幾何的方法.其中,基于位置的方法將視覺系統(tǒng)動態(tài)隱含在了目標(biāo)識別和定位中,從而簡化了控制器的設(shè)計,但是一般需要已知目標(biāo)物體的模型,且對圖像噪聲和相機(jī)標(biāo)定誤差較為敏感.目標(biāo)識別和跟蹤可以參考相關(guān)綜述,下文中主要介紹基于圖像特征和多視圖幾何的方法.
1)基于圖像特征的視覺反饋
常用的基于圖像特征的視覺反饋構(gòu)造方法,其中基于特征點的方法在以往的視覺伺服中應(yīng)用較為廣泛,研究較為成熟,但是容易受到圖像噪聲和物體遮擋的影響,并且現(xiàn)有的特征提取方法在發(fā)生尺度和旋轉(zhuǎn)變化時的重復(fù)性和精度都不是太好,在實際應(yīng)用中存在較大的問題.因此,學(xué)者們提出了基于全局圖像特征的視覺反饋方法,利用更多的圖像信息對任務(wù)進(jìn)行描述,從而增強(qiáng)視覺系統(tǒng)的魯棒性,但是模型較為復(fù)雜,控制器的設(shè)計較為困難,且可能陷入局部極小點.目前針對這一類系統(tǒng)的控制器設(shè)計的研究還比較少,一般利用局部線性化模型進(jìn)行控制,只能保證局部的穩(wěn)定性.
2)基于多視圖幾何的視覺反饋
多視圖幾何描述了物體多幅圖像之間的關(guān)系,間接反映了相機(jī)之間的幾何關(guān)系.相比于基于圖像特征的方法,多視圖幾何與笛卡爾空間的關(guān)系較為直接,簡化了控制器的設(shè)計.常用的多視圖幾何包括單應(yīng)性、對極幾何以及三焦張量需要強(qiáng)調(diào)的是,兩個視圖之間的極點與相對姿態(tài)不是同構(gòu)的,當(dāng)極點為零時不能保證二者姿態(tài)一致,而只能保證二者共線,一般使用兩步法補(bǔ)償距離誤差.單應(yīng)性矩陣描述了共面特征點在兩個視圖之間的變換關(guān)系,可以唯一決定二者的相對姿態(tài).對于非平面物體,可以結(jié)合對極幾何的方法進(jìn)行處理.結(jié)合單應(yīng)性矩陣和極點構(gòu)造了在平衡點附近與姿態(tài)同構(gòu)的誤差系統(tǒng).中采用類似的思路,并利用圖像配準(zhǔn)的思想對幾何參數(shù)進(jìn)行估計.但是,由于模型復(fù)雜,文獻(xiàn)中只提出了局部穩(wěn)定的控制律.相比之下,三焦張量是一種更加通用的方法,對目標(biāo)形狀沒有要求,且不存在奇異性問題.目前基于對極幾何和三焦張量的方法還主要用于平面移動機(jī)器人的控制,在六自由度控制中的應(yīng)用有待進(jìn)一步研究.
1.2視覺系統(tǒng)動態(tài)性能的提升
相比于常規(guī)的機(jī)器人傳感器,視覺系統(tǒng)的采樣頻率較低,視覺處理算法的時間延遲較大,而且具有一定的噪聲,這對視覺伺服系統(tǒng)的動態(tài)性能有很大的影響.近年來的研究主要從以下三個方面進(jìn)行改進(jìn):采用高速視覺系統(tǒng),提高處理速度和采樣頻率;使用分布式的網(wǎng)絡(luò)化架構(gòu),提高算法的執(zhí)行效率;設(shè)計觀測器,處理視覺反饋中的噪聲和延遲問題.
1)高速視覺系統(tǒng)
常用的數(shù)字相機(jī)的采樣頻率較低,一般在30fps左右.為了適應(yīng)高速視覺伺服任務(wù)的需求,近年來研究者開發(fā)出各種高速視覺系統(tǒng).高速視覺系統(tǒng)一般采用并行的結(jié)構(gòu),圖像檢測和處理都是以高速進(jìn)行,從而可以達(dá)到高于1kHz的頻率,方便進(jìn)行高速運動物體的跟蹤和柔性物體的識別,常用于快速反應(yīng)的系統(tǒng),但是受到硬件設(shè)備的限制,圖像分辨率較低,物體表面紋理不清晰,難以描述復(fù)雜的場景,且系統(tǒng)較為復(fù)雜,開發(fā)和維護(hù)的成本高.對于這一類的系統(tǒng),可以使用圖像矩、核采樣、互信息等全局圖像特征,不需要特征點的提取,對圖像分辨率的要求較低,相比之下控制精度更高.
2)分布式網(wǎng)絡(luò)化的視覺系統(tǒng)
文獻(xiàn)中提出基于網(wǎng)絡(luò)化分布式計算的視覺伺服控制系統(tǒng),從分布在不同部位的傳感器(如視覺傳感器、光學(xué)傳感器、雷達(dá)等)采集的數(shù)據(jù)通過網(wǎng)絡(luò)傳送到處理器節(jié)點進(jìn)行處理,從而提高了視覺伺服系統(tǒng)的采樣速度.文獻(xiàn)中提出了視覺伺服系統(tǒng)中圖像數(shù)據(jù)的傳輸協(xié)議及其調(diào)度策略.分布式的實現(xiàn)策略充分利用了多個網(wǎng)絡(luò)節(jié)點的計算資源,從而更快地進(jìn)行多傳感器信息融合,但是其效率很大程度上依賴于網(wǎng)絡(luò)的速度,并且網(wǎng)絡(luò)化的系統(tǒng)增加了控制算法的復(fù)雜程度,特別是針對網(wǎng)絡(luò)延時、故障的處理.
3)結(jié)合觀測器的視覺系統(tǒng)
由于視覺設(shè)備的采樣頻率低,并且具有噪聲,因此可以利用觀測器對圖像特征進(jìn)行觀測,從而應(yīng)對噪聲和延遲對系統(tǒng)的影響.在硬件條件限制下,使用觀測器是最有效的改善視覺系統(tǒng)性能的方法.
卡爾曼濾波(Kalmanˉlter)是一種常用的方法,對于視覺伺服系統(tǒng)這種非線性對象,可以使用擴(kuò)展卡爾曼濾波器.當(dāng)噪聲特征未知時,可以使用自適應(yīng)或自整定的方法.另外,由于視覺系統(tǒng)處理時間較長,因此可能出現(xiàn)測量時間長于控制周期的情況,可以使用雙速率卡爾曼濾波的方法對系統(tǒng)狀態(tài)進(jìn)行觀測.
粒子濾波(Particleˉlter[55])可以用于非高斯噪聲下的非線性系統(tǒng),相比于卡爾曼濾波的方法更加適合于視覺伺服系統(tǒng)的應(yīng)用.其基本思想是通過隨機(jī)采樣獲取概率分布,基于這些觀測值,實際的概率分布可以通過調(diào)整采樣的權(quán)重和位置得到.
虛擬視覺伺服(Virtualvisualservo[56])以重投影誤差作為任務(wù)函數(shù),設(shè)計虛擬控制律使其最小化,再將此控制律中得到的控制輸入(速度、加速度)進(jìn)行積分從而得到觀測到的相機(jī)位置和速度,省去了目標(biāo)識別、定位等耗時的過程.
1.3視覺系統(tǒng)噪聲的處理
視覺系統(tǒng)的噪聲主要來自于相機(jī)感光元件的噪聲和視覺處理算法的誤差,對控制系統(tǒng)性能有較大影響.視覺系統(tǒng)噪聲的處理可以從以下4個方面入手:
1)設(shè)計魯棒的特征提取算法圖像噪聲對圖像特征的提取影響較大,尤其是基于像素梯度的局部圖像特征,會出現(xiàn)特征點的誤提取和誤匹配,直接導(dǎo)致系統(tǒng)狀態(tài)變量的誤差,對控制系統(tǒng)的穩(wěn)定性有很大的影響.常用的去除例外點的方法有RANSAC(Randomsampleconsensus)算法、霍夫變換、最小二乘法以及M-estimators算法等.
2)使用觀測器降低噪聲的影響對于含有噪聲的特征向量,可以利用觀測器對其狀態(tài)進(jìn)行觀測降低噪聲的影響.常用的方法有Kalman濾波[52?54]、粒子濾波[55]等.另外,在有些控制器中需要利用圖像空間中的速度信息,由于圖像采樣頻率較低且噪聲較大,數(shù)值微分的方法存在較大的誤差,此時也可以利用觀測器對其進(jìn)行估計
3)利用冗余的特征向量對于冗余的特征向量,可以利用每個特征點測量的統(tǒng)計特征描述該特征點的可靠性,在設(shè)計控制律時可以基于每個維度的可靠性設(shè)計加權(quán)矩陣,從而降低噪聲較大或誤匹配特征點對系統(tǒng)的影響.另外,也可以引入隨特征點與圖像邊界距離遞增的加權(quán)函數(shù)處理目標(biāo)部分離開視野的情況,保證控制律的連續(xù)性,提高系統(tǒng)的容錯性.
4)提高對目標(biāo)的感知力圖像對物體運動的感知力與特征點的選取以及物體姿態(tài)有關(guān),當(dāng)存在圖像噪聲時,不同的特征點選取對系統(tǒng)穩(wěn)態(tài)誤差有一定的影響,因此可以利用優(yōu)化的方法選取最佳的特征點對任務(wù)進(jìn)行描述[59].在控制的過程中,可以利用圖像雅可比矩陣的奇異值衡量對目標(biāo)的感知能力.在任務(wù)零空間中優(yōu)化軌跡以增強(qiáng)感知力,從而提高控制性能.
在視覺伺服控制器的設(shè)計中,主要的問題在于模型不確定性和約束的處理.這是由于視覺模型依賴于目標(biāo)深度、相機(jī)參數(shù)等未知或不精確的信息,并且在控制的過程中需要保證目標(biāo)的可見,對系統(tǒng)的穩(wěn)定性和動態(tài)性能有較大的影響.
2.1視覺伺服中模型不確定性的處理
針對模型不確定性問題,主要有三種解決方案,分別為自適應(yīng)算法、魯棒算法和智能算法.自適應(yīng)算法通過自適應(yīng)環(huán)節(jié)在線調(diào)整模型,從而優(yōu)化控制性能;魯棒算法基于最優(yōu)估計參數(shù)設(shè)計控制器,并保證對一定范圍內(nèi)參數(shù)攝動的穩(wěn)定性;智能算法一般基于學(xué)習(xí)的策略應(yīng)對參數(shù)不確定性.
2.1.1自適應(yīng)視覺伺服控制
考慮到模型參數(shù)不確定帶來的問題,研究者提出了一系列自適應(yīng)的方法對模型誤差進(jìn)行補(bǔ)償.自適應(yīng)控制方法由控制律和自適應(yīng)環(huán)節(jié)組成,通過自適應(yīng)環(huán)節(jié)的在線修正保證系統(tǒng)的穩(wěn)定性.自適應(yīng)的方法可以分為參數(shù)自適應(yīng)和雅可比矩陣自適應(yīng)方法.
1)參數(shù)自適應(yīng)算法
由于特征點在圖像空間的運動特性依賴于其深度和相機(jī)參數(shù),從而可以在控制過程中根據(jù)控制輸入使用當(dāng)前估計參數(shù)將運動投影到圖像空間,預(yù)測特征點的運動.預(yù)測值與實際觀測的特征點運動之間的差異作為估計投影誤差,可以通過迭代優(yōu)化的方法使該投影誤差最小化從而對參數(shù)進(jìn)行在線估計.一種常用的自適應(yīng)方法是結(jié)合Slotine等的思想,利用梯度法或其他搜索方法對特征點的估計投影誤差進(jìn)行在線最小化.
當(dāng)相機(jī)標(biāo)定參數(shù)未知時,一種思路是基于\深度無關(guān)雅可比矩陣"的方法,將圖像雅可比矩陣分為深度因子和深度無關(guān)的部分,使用深度無關(guān)的部分設(shè)計反饋控制律,從而在得到的閉環(huán)系統(tǒng)中相機(jī)參數(shù)是線性表達(dá)的.對于深度信息未知的情況,可以加入對深度的自適應(yīng)環(huán)節(jié)增強(qiáng)其穩(wěn)定性.除了基于特征點的系統(tǒng),這種方法對一些廣義特征也是有效的,只要深度無關(guān)雅可比矩陣對廣義特征的未知幾何參數(shù)是線性參數(shù)化的,如距離、角度、質(zhì)心等.
對于視覺伺服軌跡跟蹤控制,常規(guī)的方法需要加入圖像空間中的速度作為前饋項,而圖像中的速度一般是通過對圖像坐標(biāo)信息的數(shù)值微分得到的,相比于關(guān)節(jié)空間的速度具有更大的噪聲,尤其是當(dāng)采樣頻率較低時具有較大的誤差.因此,一些學(xué)者提出不需要測量圖像速度的方法.這一類方法利用關(guān)節(jié)速度和估計的雅可比矩陣設(shè)計圖像空間速度的觀測器,并加入對相機(jī)參數(shù)和深度的自適應(yīng).因為機(jī)器人關(guān)節(jié)速度的測量是比較精確的,因此可以較好地改善數(shù)值微分帶來的問題.
2)雅可比矩陣自適應(yīng)算法
這一類的方法直接對雅可比矩陣進(jìn)行在線辨識,由遞推的雅可比矩陣辨識算法和控制律組成.常用的雅可比矩陣辨識方法如Broyden算法、加權(quán)遞推最小二乘算法、Kalman濾波等.Pari等通過實驗對比了使用遞推最小二乘法估計的雅可比矩陣和使用解析形式的雅可比矩陣時的控制性能,結(jié)果證明基于雅可比矩陣在線辨識的方法具有與基于解析形式雅可比矩陣的方法相差不多的控制效果和魯棒性,而基于雅可比矩陣在線辨識的方法不需要大量對系統(tǒng)的先驗知識和復(fù)雜的模型推導(dǎo)過程,但是其模型只在其訓(xùn)練的區(qū)域內(nèi)有效.
2.1.2魯棒視覺伺服控制
在基于圖像的視覺伺服控制中,由相機(jī)參數(shù)、目標(biāo)深度以及機(jī)器人模型誤差造成的圖像雅可比矩陣的不確定性會對控制效果產(chǎn)生影響,并可能造成控制器不穩(wěn)定.為了保證在參數(shù)攝動的情況下的控制器的穩(wěn)定性,可以在最優(yōu)參數(shù)估計的基礎(chǔ)上設(shè)計魯棒控制器,從而在一定的參數(shù)變化域內(nèi)保證穩(wěn)定性.
一種常用的思路是利用李雅普諾夫的方法設(shè)計魯棒控制器,從而克服深度和標(biāo)定誤差、機(jī)器人模型誤差以及機(jī)器人執(zhí)行速度指令時的量化誤差帶來的不確定性問題.另一種思路是基于優(yōu)化的方法,通過對性能指標(biāo)的在線優(yōu)化(如 H2 =H1指標(biāo)、閉環(huán)系統(tǒng)的穩(wěn)定域等)得到在具有參數(shù)不確定性時的最優(yōu)控制輸入.另外,滑??刂埔彩且环N常用的方法,通過構(gòu)造與系統(tǒng)不確定性參數(shù)和擾動無關(guān)的滑動面,并設(shè)計控制律迫使系統(tǒng)向超平面收束,從而沿著切換超平面到達(dá)系統(tǒng)原點.由于常規(guī)的滑??刂飘a(chǎn)生的控制輸入是不連續(xù)的,可能造成系統(tǒng)的抖振,可以使用二階滑模Super-twisting控制的方法解決此問題.
雖然基于魯棒控制的方法一般都具有對參數(shù)變化和擾動不敏感的優(yōu)點,但是通常需要較大的控制增益,造成系統(tǒng)響應(yīng)不光滑,使執(zhí)行器的損耗較大,且可能造成系統(tǒng)的抖振.在未來的研究中可以結(jié)合自適應(yīng)控制的方法,在模型細(xì)小變化時利用控制器的魯棒性從而避免自適應(yīng)機(jī)構(gòu)過于頻繁的調(diào)整,當(dāng)模型變化較大時,則利用自適應(yīng)的方法對其進(jìn)行修正,從而避免魯棒控制方法過高的增益造成的問題.
2.1.3智能視覺伺服控制
智能控制不需要精確的數(shù)學(xué)模型,并且具有自學(xué)習(xí)能力,適合于具有模型不確定性的視覺伺服系統(tǒng)控制.智能視覺伺服控制方法有:
基于計算智能的方法一般利用人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等方法對視覺伺服系統(tǒng)模型進(jìn)行擬合,并利用學(xué)習(xí)到的模型進(jìn)行控制.BP神經(jīng)網(wǎng)絡(luò)是一種常用的方法,為了提高其收斂速度,可以使用遺傳算法設(shè)計其初值和參數(shù).這一類方法不需要復(fù)雜的建模過程,但是需要預(yù)先進(jìn)行離線訓(xùn)練,而且當(dāng)環(huán)境變化時又需要重新訓(xùn)練,限制了其應(yīng)用.
模糊控制利用模糊規(guī)則描述視覺伺服系統(tǒng)中各變量之間的關(guān)系,不需要精確的系統(tǒng)模型,但是需要一定的先驗知識或離線學(xué)習(xí).在應(yīng)用中,可以直接設(shè)計模糊控制器或利用模糊規(guī)則對其他控制器參數(shù)進(jìn)行更新.但是,對于多自由度的視覺伺服系統(tǒng),變量之間的關(guān)系復(fù)雜且耦合嚴(yán)重,模糊規(guī)則的設(shè)計困難,因此以往的研究主要針對低自由度的系統(tǒng).對于具有重復(fù)特性的視覺伺服任務(wù),迭代學(xué)習(xí)控制利用先前動作中的數(shù)據(jù)信息,通過迭代找到合適的控制輸入,可以實現(xiàn)精確的軌跡跟蹤.這一類方法主要有兩種思路,一種是直接迭代學(xué)習(xí)控制,使用迭代學(xué)習(xí)律得到控制輸入的前饋量,并可以加入反饋輔助項提高收斂速度;另一種是間接迭代學(xué)習(xí)控制,使用迭代學(xué)習(xí)對模型參數(shù)進(jìn)行更新,從而最終得到精確的模型用于跟蹤控制.這一類方法要求任務(wù)具有重復(fù)特性,可以用于工業(yè)現(xiàn)場的流水線作業(yè).
近20多年來,機(jī)器人視覺伺服控制得到了廣泛的研究,但是在實際中的應(yīng)用較少.實際上,視覺伺服的理論研究與實際應(yīng)用有一定的脫節(jié),大部分的研究考慮理想的工作環(huán)境和任務(wù),并采用示教(Teach-by-showing)的方式.這適合于靜態(tài)環(huán)境下的重復(fù)性任務(wù),但是機(jī)器人的任務(wù)是復(fù)雜多樣的.近年來,研究者提出了創(chuàng)新性的解決方案,為視覺伺服系統(tǒng)的實施和應(yīng)用提供了新的思路.在實際中,基于視覺伺服的系統(tǒng)主要有兩種類型,一種是機(jī)器人自主控制系統(tǒng),完全由機(jī)器人自身根據(jù)視覺反饋完成分配的任務(wù);另一種是人機(jī)協(xié)作系統(tǒng),在任務(wù)完成的過程中需要人為的干預(yù),其目的在于協(xié)助人更好地完成任務(wù).
3.1自主控制系統(tǒng)
視覺伺服在機(jī)器人系統(tǒng)中有廣泛的應(yīng)用,如移動機(jī)器人的視覺導(dǎo)航和機(jī)械臂的末端控制等.移動機(jī)器人的視覺導(dǎo)航可以描述為視覺伺服跟蹤控制問題或一系列的視覺伺服調(diào)節(jié)控制問題,一般需要預(yù)先進(jìn)行訓(xùn)練得到期望的圖像序列.工業(yè)機(jī)械臂常使用示教的策略,以零件組裝任務(wù)為例,工程師需要先利用手操器對其進(jìn)行編程,機(jī)械臂再通過執(zhí)行記錄的驅(qū)動信號完成任務(wù).引入視覺伺服系統(tǒng)可以簡化此過程,只需要人在相機(jī)的監(jiān)控下完成一次操作,機(jī)械臂即可利用視覺反饋完成任務(wù).傳統(tǒng)的視覺伺服系統(tǒng)使用示教的方式,其控制器的設(shè)定值為相機(jī)在期望位置處拍攝到的圖像.這種方法適合于在局部空間內(nèi)執(zhí)行重復(fù)性任務(wù)的工業(yè)機(jī)械臂,但是對于大范圍的移動機(jī)器人視覺導(dǎo)航任務(wù)顯得實現(xiàn)成本較高.學(xué)者們提出了以下幾種改進(jìn)策略:
1)利用其他相機(jī)拍攝的圖像作為設(shè)定值,如Teach-by-zooming策略;
2)利用其他模態(tài)的圖像作為設(shè)定值,如基于互信息的方法;
3)利用幾何信息定義視覺伺服任務(wù).
在現(xiàn)實生活中,如果要告訴某人去某地,可以提供該地點的照片或地圖,也可以描述該場景的幾何特性.實際上,上述的三種策略分別對應(yīng)了人類的這些行為習(xí)慣.在未來的機(jī)器人應(yīng)用中,可以充分利用互聯(lián)網(wǎng)資源,如Google街景、Google地圖等,使其更靈活地為人類服務(wù).
另外,大部分視覺伺服系統(tǒng)都要求目標(biāo)在圖像中持續(xù)可見(FOV約束),這在實際任務(wù)中大大縮小了機(jī)器人的可達(dá)工作空間.Jia等針對平面移動機(jī)器人提出了基于稀疏路標(biāo)的視覺導(dǎo)航方法,利用\關(guān)鍵幀"策略放松了視野約束,從而優(yōu)化了非完整約束機(jī)器人在工作空間中的軌跡.Li等提出了機(jī)器人任務(wù)空間的全局控制器,利用各個區(qū)域性有效的反饋信息構(gòu)造了連續(xù)的整體控制器,使得機(jī)器人在完成任務(wù)的過程中可以安全地穿過視覺感知盲區(qū)和奇異區(qū)域.
3.2人機(jī)協(xié)作系統(tǒng)
目前大部分機(jī)器人的自主定位和導(dǎo)航任務(wù)都需要預(yù)先對任務(wù)進(jìn)行精確描述,但是實際應(yīng)用中的一些復(fù)雜任務(wù)難以用數(shù)學(xué)描述,且在任務(wù)完成的過程中需要進(jìn)行智能決策,以當(dāng)前的人工智能發(fā)展程度無法由機(jī)器人自主完成.因此可以構(gòu)造人機(jī)協(xié)作系統(tǒng),在任務(wù)執(zhí)行過程中加入人類的判斷,視覺伺服控制作為輔助系統(tǒng),幫助人更輕松地完成一些復(fù)雜任務(wù),形成半自動的系統(tǒng).常見的人機(jī)協(xié)作系統(tǒng)有以下幾種實現(xiàn)策略:
1)人機(jī)串級控制,人負(fù)責(zé)上層的決策控制,視覺伺服系統(tǒng)負(fù)責(zé)底層的運動控制,如水下遙控機(jī)器人、半自動駕駛輪椅等.
2)視覺伺服系統(tǒng)對操作對象施加運動約束,降低人需要操作的自由度,提高操作精度,如人機(jī)協(xié)作操作、手術(shù)輔助系統(tǒng)等.
3)人機(jī)切換控制,將任務(wù)分為人主導(dǎo)的區(qū)域和機(jī)器人主導(dǎo)的區(qū)域,共同完成任務(wù).
在醫(yī)療領(lǐng)域,學(xué)者們提出了一系列基于醫(yī)療成像設(shè)備的視覺伺服系統(tǒng),對醫(yī)生的手術(shù)操作起到協(xié)助作用.
模糊控制理論發(fā)展至今,模糊推論的方法大致可分為三種,第一種推論法是依據(jù)模糊關(guān)系的合成法則,第二種推論法是根據(jù)模糊邏輯的推論法簡化而成,第三種推論法和第一種相類似,只是其后件部分改由一般的線性式組成的。模糊推論大都采三段論法,可表示如下:
條件命題:If x is A then y is B
事 實:x is A
結(jié) 論:y is B
表示法中的條件命題相當(dāng)于模糊控制中的模糊控制規(guī)則,前件部和后件部的關(guān)系,可以用模糊關(guān)系式來表達(dá);至于推論演算,則是將模糊關(guān)系和模糊集合A進(jìn)行合成演算,得到模糊集合B。
若前件部分含有多個命題時,則可表示如下:
條件命題:If x1 is A1 …. and xn is An
then y is B
事 實:x is A1 and ….and xn is A’n
結(jié) 論:y is B