阻抗匹配(Impedance?matching)是微波電子學(xué)里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,幾乎不會有信號反射回來源點,從而提升能源效益。大體上,阻抗匹配有兩種,一種是透過改變阻抗力(用于集中參數(shù)電路),另一種則是調(diào)整傳輸線的波長(用于傳輸線)。要匹配一組線路,首先把負載點的阻抗值,除以傳輸線的特性阻抗值來歸一化,然后把數(shù)值劃在史密斯圖上。
中文名稱 | 阻抗匹配 | 外文名稱 | impedance matching |
---|---|---|---|
應(yīng)用學(xué)科 | 電信 電子 |
在信號源給定的情況下,輸出功率取決于負載電阻與信號源內(nèi)阻之比K,當兩者相等,即K=1時,輸出功率最大。阻抗匹配的概念可以推廣到交流電路,當負載阻抗與信號源阻抗共軛時,能夠?qū)崿F(xiàn)功率的最大傳輸,如果負載阻抗不滿足共軛匹配的條件,就要在負載和信號源之間加一個阻抗變換網(wǎng)絡(luò),將負載阻抗變換為信號源阻抗的共軛,實現(xiàn)阻抗匹配。
大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調(diào)整傳輸線的波長(transmission line matching)。
要匹配一組線路,首先把負載點的阻抗值,除以傳輸線的特性阻抗值來歸一化,然后把數(shù)值劃在史密夫圖表上。
1. 改變阻抗力
把電容或電感與負載串聯(lián)起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重復(fù)以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?/p>
2. 調(diào)整傳輸線
由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調(diào)整為零,完成匹配。
阻抗匹配則傳輸功率大,對于一個直流電源來講,阻抗匹配時輸出效率只有50%。并且電源以對外輸出最大功率為目標,不適用阻抗匹配的條件。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產(chǎn)生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。高速PCB布線時,為了防止信號的反射,要求是線路的阻抗為50歐姆。這是個大約的數(shù)字,一般規(guī)定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則為 100歐姆,只是取個整而已,為了匹配方便。
阻抗匹配概述
信號傳輸過程中負載阻抗和信源內(nèi)阻抗之間的特定配合關(guān)系。一件器材的輸出阻抗和所連接的負載阻抗之間所應(yīng)滿足的某種關(guān)系,以免接上負載后對器材本身的工作狀態(tài)產(chǎn)生明顯的影響。對電子設(shè)備互連來說,例如信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應(yīng)選用與其輸出端標稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。
輸入端阻抗匹配時,傳輸線獲得最大功率;在輸出端阻抗匹配的情況下,傳輸線上只有向終端行進的電壓波和電流波,攜帶的能量全部為負載所吸收。
在阻抗失配的情況下,傳輸線上將同時存在-射波和應(yīng)射波。
從傳輸?shù)慕嵌葋碚f,總是竭力避免阻抗失配現(xiàn)象的出現(xiàn),因為反射波的出現(xiàn),意味著遞送到傳輸線終端的功率不能全部為負載所吸收,降低了傳輸效率;在輸送功率較高的情況下,電壓或電流的波腹有可能損壞傳輸線的介質(zhì);而且傳輸線始端的輸入阻抗隨頻率而變化,輸送多頻信號時,將因機、線阻抗難于匹配而出現(xiàn)失真。
阻抗匹配的程度常用電壓反射系數(shù)來衡量。
信號傳輸過程中負載阻抗和信源內(nèi)阻抗之間的特定配合關(guān)系。一件器材的輸出阻抗和所連接的負載阻抗之間所應(yīng)滿足的某種關(guān)系,以免接上負載后對器材本身的工作狀態(tài)產(chǎn)生明顯的影響。對電子設(shè)備互連來說,例如信號源連放大...
廣聯(lián)達計價軟件中,清單匹配選擇自動匹配,有些清單匹配不到就手動匹配,手動匹配也匹配不到的清單,怎么辦
5.0計價只有兩種清單規(guī)則,超出的就無法選擇了,如果確定是營改增,那么除此以外的清單規(guī)則,目前就是無法選擇的。
出現(xiàn)這種情況。操作方式如下: 在電腦開始——運行中輸入%appdata%——找到grandsoft文件夾刪除即可。再重安裝軟件就可以了。 如圖
①負載阻抗等于信源內(nèi)阻抗,即它們的模與輻角分別相等,這時在負載阻抗上可以得到無失真的電壓傳輸。
②負載阻抗等于信源內(nèi)阻抗的共軛值,即它們的模相等而輻角之和為零。這時在負載阻抗上可以得到最大功率。這種匹配條件稱為共軛匹配。如果信源內(nèi)阻抗和負載阻抗均為純阻性,則兩種匹配條件是等同的。
阻抗匹配是指負載阻抗與激勵源內(nèi)部阻抗互相適配,得到最大功率輸出的一種工作狀態(tài)。對于不同特性的電路,匹配條件是不一樣的。在純電阻電路中,當負載電阻等于激勵源內(nèi)阻時,則輸出功率為最大,這種工作狀態(tài)稱為匹配,否則稱為失配。
當激勵源內(nèi)阻抗和負載阻抗含有電抗成份時,為使負載得到最大功率,負載阻抗與內(nèi)阻必須滿足共軛關(guān)系,即電阻成份相等,電抗成份絕對值相等而符號相反。這種匹配條件稱為共軛匹配。
阻抗匹配(Impedance matching)是微波電子學(xué)里的一部分,主要用于傳輸線上,來達到所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。史密夫圖表上。電容或電感與負載串聯(lián)起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?/p>
阻抗從字面上看就與電阻不一樣,其中只有一個阻字是相同的,而另一個抗字呢?簡單地說,阻抗就是電阻加電抗,所以才叫阻抗;通俗一點地說,阻抗就是電阻、電容抗及電感抗在向量上的和。在直流電的世界中,物體對電流阻礙的作用叫做電阻,世界上所有的物質(zhì)都有電阻,只是電阻值的大小差異而已。電阻小的物質(zhì)稱作良導(dǎo)體,電阻很大的物質(zhì)稱作非導(dǎo)體,而最近在高科技領(lǐng)域中稱的超導(dǎo)體,則是一種電阻值幾近于零的東西。但是在交流電的領(lǐng)域中則除了電阻會阻礙電流以外,電容及電感也會阻礙電流的流動,這種作用就稱之為電抗,意即抵抗電流的作用。電容及電感的電抗分別稱作電容抗及電感抗,簡稱容抗及感抗。它們的計量單位與電阻一樣是歐姆,而其值的大小則和交流電的頻率有關(guān)系,頻率愈高則容抗愈小感抗愈大,頻率愈低則容抗愈大而感抗愈小。此外電容抗和電感抗還有相位角度的問題,具有向量上的關(guān)系式,因此才會說:阻抗是電阻與電抗在向量上的和。
高頻電路的阻抗匹配由于高頻功率放大器工作于非線性狀態(tài),所以線性電路和阻抗匹配(即:負載阻抗與電源內(nèi)阻相等)這一概念不能適用于它。因為在非線性(如:丙類)工作的時候,電子器件的內(nèi)阻變動劇烈:通流的時候,內(nèi)阻很小;截止的時候,內(nèi)阻接近無窮大。因此輸出電阻不是常數(shù)。所以所謂匹配的時候內(nèi)阻等于外阻,也就失去了意義。因此,高頻功率放大的阻抗匹配概念是:在給定的電路條件下,改變負載回路的可調(diào)元件,使電子器件送出額定的輸出功率至負載。這就叫做達到了匹配狀態(tài)。
阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。
阻抗匹配分為低頻和高頻兩種情況討論。我們先從直流電壓源驅(qū)動一個負載入手。由于實際的電壓源,總是有內(nèi)阻的,我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯(lián)的模型。假設(shè)負載電阻為R,電源電動勢為U,內(nèi)阻為r,那么我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。
負載R上的電壓為:Uo=IR=U/[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。
再來計算一下電阻R消耗的功率為: P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r}
對于一個給定的信號源,其內(nèi)阻r是固定的,而負載電阻R則是由我們來選擇的。注意式中[(R-r)*(R-r)/R],當R=r時,[(R-r)*(R-r)/R]可取得最小值0,這時負載電阻R上可獲得最大輸出功率Pmax=U*U/(4*r)。即,當負載電阻跟信號源內(nèi)阻相等時,負載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。
對于純電阻電路,此結(jié)論同樣適用于低頻電路及高頻電路。當交流電路中含有容性或感性阻抗時,結(jié)論有所改變,就是需要信號源與負載阻抗的的實部相等,虛部互為相反數(shù),這叫做共軛匹配。
在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負載之間的情況,因為低頻信號的波長相對于傳輸線來說很長,傳輸線可以看成是"短線",反射可以不考慮(可以這么理解:因為線短,即使反射回來,跟原信號還是一樣的)。
從以上分析我們可以得出結(jié)論:如果我們需要輸出電流大,則選擇小的負載R;如果我們需要輸出電壓大,則選擇大的負載R;如果我們需要輸出功率最大,則選擇跟信號源內(nèi)阻匹配的電阻R。
有時阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負載條件下設(shè)計的,如果負載條件改變了,則可能達不到原來的性能,這時我們也會叫做阻抗失配。
在高頻電路中,我們還必須考慮反射的問題。當信號的頻率很高時,則信號的波長就很短,當波長短得跟傳輸線長度可以比擬時,反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特征阻抗跟負載阻抗不匹配(相等)時,在負載端就會產(chǎn)生反射。為什么阻抗不匹配時會產(chǎn)生反射以及特征阻抗的求解方法,牽涉到二階偏微分方程的求解,在這里我們不細說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。
格式:pdf
大?。?span id="wwqiqy4" class="single-tag-height">10KB
頁數(shù): 1頁
評分: 4.5
同軸電纜 SPD的阻抗匹配 摘要: 同軸電纜 SPD的選型,需要考慮的參數(shù)有很多,例如接口、工作電 壓、插入損耗等,但阻抗匹配這一重要參數(shù)很容易被忽視, 該參數(shù)恰恰也決定著 SPD 安裝后對原線路的影響。本文主要就同軸電纜 SPD(避雷器)阻抗匹配問 題進行討論。 關(guān)鍵詞: 同軸電纜;阻抗匹配; SPD 0引言 同軸電纜通常也被稱做細纜, 在 10Base2網(wǎng)絡(luò)中是主要的信號傳輸介質(zhì), 但 隨著 10/100BaseT網(wǎng)絡(luò)的普及,雙絞線已逐漸取代了細纜的位置,成為了現(xiàn)在局 域網(wǎng)絡(luò)的主要傳輸介質(zhì)。 在網(wǎng)絡(luò)中,同軸電纜雖被雙絞線取代, 但它并沒有退出通信系統(tǒng)的舞臺。 在 現(xiàn)代網(wǎng)絡(luò)中同軸電纜主要作為 E1線路(廣域網(wǎng)常用專線)的接入介質(zhì),因此在 視頻傳輸中得到廣泛的應(yīng)用。 同軸電纜抗干擾能力很弱, 尤其是雷電磁脈沖對其 影響很大,很容易產(chǎn)生雷電過電壓而損壞連接的設(shè)備,但可以通過安裝 BNC 接
格式:pdf
大小:10KB
頁數(shù): 2頁
評分: 4.3
同軸電纜SPD的選型,需要考慮的參數(shù)有很多,例如接口、工作電壓、插入損耗等,但阻抗匹配這一重要參數(shù)很容易被忽視,該參數(shù)恰恰也決定著SPD安裝后對原線路的影響。本文主要就同軸電纜SPD(避雷器)阻抗匹配問題進行討論。
在線路板中,若有信號傳送時,希望由電源的發(fā)出端起,在能量損失最小的情形下,能順利的傳送到接受端,而且接受端將其完全吸收而不作任何反射。要達到這種傳輸,線路中的阻抗必須和發(fā)出端內(nèi)部的阻抗相等才行稱為"阻抗匹配"。在設(shè)計高速PCB電路時,阻抗匹配是設(shè)計的要素之一。而阻抗值與走線方式有絕對的關(guān)系。例如,是走在表面層(Microstrip)還是內(nèi)層(Stripline/Double Stripline)、與參考的電源層或地層的距離、走線寬度、PCB材質(zhì)等均會影響走線的特性阻抗值。也就是說,要在布線后才能確定阻抗值,同時不同PCB生產(chǎn)廠家生產(chǎn)出來的特性阻抗也有微小的差別。一般仿真軟件會因線路模型或所使用的數(shù)學(xué)算法的限制而無法考慮到一些阻抗不連續(xù)的布線情況,這時候在原理圖上只能預(yù)留一些端接(Temninators),如串聯(lián)電阻等,來緩和走線阻抗不連續(xù)的效應(yīng)。真正根本解決問題的方法還是布線時盡量注意避免阻抗不連續(xù)的發(fā)生。
定義:
特性阻抗的定義:在某一頻率下,電子器件傳輸信號線中,相對某一參考層,其高頻信號或電磁波在傳播過程中所受的阻力稱之為特性阻抗,它是電阻抗,電感抗,電容抗……的一個矢量總和。
特性阻抗的分類:
目前常見的特性阻抗分為:單端(線)阻抗、差分(動)阻抗、共面阻抗等。
單端(線)阻抗:英文single ended impedance ,指單根信號線測得的阻抗 。
差分(動)阻抗:英文differential impedance,指差分驅(qū)動時在兩條等寬等間距的傳輸線中測試到的阻抗。
共面阻抗:英文coplanar impedance ,指信號線在其周圍GND/VCC(信號線到其兩側(cè)GND/VCC間距相等)之間傳輸時所測試到的阻抗。
阻抗控制需求的決定條件:當信號在PCB導(dǎo)線中傳輸時,若導(dǎo)線的長度接近信號波長的1/7,此時的導(dǎo)線便成為信號傳輸線,一般信號傳輸線均需做阻抗控制。PCB制作時,依客戶要求決定是否需管控阻抗,若客戶要求某一線寬需做阻抗控制,生產(chǎn)時則需管控該線寬的阻抗。
阻抗匹配的三個要素:輸出阻抗(原始主動零件) 特性阻抗(信號線) 輸入阻抗(被動零件)(PCB板)
阻抗匹配
當信號在PCB上傳輸時,PCB板的特性阻抗必須與頭尾元件的電子阻抗相匹配,一旦阻抗值超出公差,所傳出的信號能量將出現(xiàn)反射、散射、衰減或延誤等現(xiàn)象,從而導(dǎo)致信號不完整,信號失真。
電子行業(yè)的工程師經(jīng)常會遇到阻抗匹配問題。什么是阻抗匹配,為什么要進行阻抗匹配?本文帶您一探究竟!
一、什么是阻抗
在電學(xué)中,常把對電路中電流所起的阻礙作用叫做阻抗。阻抗單位為歐姆,常用Z表示,是一個復(fù)數(shù)Z= R+i( ωL–1/(ωC))。具體說來阻抗可分為兩個部分,電阻(實部)和電抗(虛部)。其中電抗又包括容抗和感抗,由電容引起的電流阻礙稱為容抗,由電感引起的電流阻礙稱為感抗。
圖1 復(fù)數(shù)表示方法
二、阻抗匹配的重要性
阻抗匹配是指信號源或者傳輸線跟負載之間達到一種適合的搭配。阻抗匹配主要有兩點作用,調(diào)整負載功率和抑制信號反射。
1、調(diào)整負載功率
假定激勵源已定,那么負載的功率由兩者的阻抗匹配度決定。對于一個理想化的純電阻電路或者低頻電路,由電感、電容引起的電抗值基本可以忽略,此時電路的阻抗來源主要為電阻。如圖2所示,電路中電流I=U/(r+R),負載功率P=I*I*R。由以上兩個方程可得當R=r時P取得最大值,Pmax=U*U/(4*r)。
圖2 負載功率調(diào)整
2、抑制信號反射
當一束光從空氣射向水中時會發(fā)生反射,這是因為光和水的光導(dǎo)特性不同。同樣,當信號傳輸中如果傳輸線上發(fā)生特性阻抗突變也會發(fā)生反射。波長與頻率成反比,低頻信號的波長遠遠大于傳輸線的長度,因此一般不用考慮反射問題。高頻領(lǐng)域,當信號的波長與傳輸線長出于相同量級時反射的信號易與原信號混疊,影響信號質(zhì)量。通過阻抗匹配可有效減少、消除高頻信號反射。
圖3 正常信號
圖4 異常信號(反射引起超調(diào))
三、阻抗匹配的方法
阻抗匹配的方法主要有兩個,一是改變組抗力,二是調(diào)整傳輸線。
改變阻抗力就是通過電容、電感與負載的串并聯(lián)調(diào)整負載阻抗值,以達到源和負載阻抗匹配。
調(diào)整傳輸線是加長源和負載間的距離,配合電容和電感把阻抗力調(diào)整為零。此時信號不會發(fā)生發(fā)射,能量都能被負載吸收。高速PCB布線中,一般把數(shù)字信號的走線阻抗設(shè)計為50歐姆。一般規(guī)定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線(差分)為85-100歐姆。
四、阻抗匹配的應(yīng)用
1、功放與音箱
無論是定阻抗式還是定電壓式輸出的功放,只有喇叭的總功率和功放的總功率相等時才能得到最佳的工作狀態(tài)。音箱系統(tǒng)若要完全達到匹配是非常困難的,它的音頻成分總是在不停的變化,好在音箱系統(tǒng)對阻抗匹配度要求并不高。最常見到的喇叭阻抗的標示值是8歐姆,它表示當輸入1KHz的正弦波信號,它呈現(xiàn)的阻抗值是八歐姆;或者是在喇叭的工作頻率響應(yīng)范圍內(nèi),平均阻抗為8歐姆。
圖5 音箱
2、PCB走線
高頻領(lǐng)域中,信號頻率對PCB走線的阻抗值影響非常大。一般來說當數(shù)字信號邊沿時間小于1ns或者模擬信號頻率超過300M時就要考慮阻抗問題。PCB走線阻抗主要來自寄生的電容、電阻、電感系數(shù),主要因素有材料介電常數(shù)、線寬、線厚乃至焊盤的厚度等。PCB 阻抗的范圍是 25 至120 歐姆,USB、 LVDS、 HDMI、 SATA等一般要做85-100歐姆阻抗控制。
圖6 走線匹配阻抗
3、天線設(shè)計
研究天線阻抗的主要目的是為實現(xiàn)天線和饋線間的匹配。發(fā)射信號時應(yīng)使發(fā)射天線與饋線的特性阻抗相等,以獲得最好的信號增益。接收信號時天線與負載應(yīng)做共軛匹配,接收機(負載)阻抗一般認為只有實數(shù)部分,因此需要用匹配網(wǎng)絡(luò)來除去天線的電抗部分并使它們的電阻部分相等。圖7為天線阻抗匹配時常用的π型網(wǎng)絡(luò),使用網(wǎng)絡(luò)分析儀測量阻抗以確定 C1、C2、C3 的取值,完成阻抗匹配。
圖7 π型電路
4、終端匹配電阻
在設(shè)計CAN總線、485總線時常需要在差分線兩端加終端電阻(匹配電阻),以減少由特性阻抗突變造成的信號反射。如下圖CAN總線網(wǎng)絡(luò),雙絞線特性阻抗為120歐姆,若不加終端電阻兩端直接懸空,空氣的特性阻抗為無窮大。此時,極易出現(xiàn)圖4所示的信號反射。
圖8 CAN總線網(wǎng)絡(luò)
對于CAN總線來說,由于收發(fā)器對信號電平判斷的采樣點位置普遍靠后,因此信號反射一般不會影響通信錯誤率。反射會影響產(chǎn)品的EMI特性,最直接的表現(xiàn)就是眼圖實驗效果差,存在兩個異常凸起。
圖9 CAN總線眼圖
致遠電子的 M6G2C-256LI 核心板,主要器件由 MPU、 DDR、 Flash、 power 四部分構(gòu)成,看似簡單的架構(gòu)又是如何保證核心板的穩(wěn)定性呢?差分蛇形走線、等長控制、阻抗匹配、 PCB 分層設(shè)計、高速信號參考地等設(shè)計來保證產(chǎn)品的設(shè)計合理性,再配合信號完整性、信號眼圖、信號脈沖等等儀器測試為產(chǎn)品穩(wěn)定性保駕護航。
圖10 M6G2C-256LI工業(yè)級核心板
如果想要了解更多相關(guān)信息,請多多關(guān)注eeworld,eeworld電子工程世界將給大家提供更全、更詳細、更新的資訊信息電子行業(yè),EEWORLD原文鏈接:http://www.eeworld.com.cn/qrs/article_2018020844705.html
把電容或電感與負載串聯(lián)起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數(shù)電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉(zhuǎn)180度,然后才沿電阻圈走動,再沿中心旋轉(zhuǎn)180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變?yōu)榱阃瓿善ヅ洹?
由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調(diào)整為零,完成匹配。
阻抗匹配則傳輸功率大,對于一個電源來講,單它的內(nèi)阻等于負載時,輸出功率最大,此時阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。
數(shù)位系統(tǒng)之多層板訊號線(Signal Line)中,當出現(xiàn)方波訊號的傳輸時,可將之假想成為軟管(hose)送水澆花。一端于手握處加壓使其射出水柱,另一端接在水龍頭。當握管處所施壓的力道恰好,而讓水柱的射程正確灑落在目標區(qū)時,則施與受兩者皆歡而順利完成使命,豈非一種得心應(yīng)手的小小成就?
然而一旦用力過度水注射程太遠,不但騰空越過目標浪費水資源,甚至還可能因強力水壓無處宣泄,以致往來源反彈造成軟管自龍頭上的掙脫!不僅任務(wù)失敗橫生挫折,而且還大捅紕漏滿臉豆花呢!
反之,當握處之擠壓不足以致射程太近者,則照樣得不到想要的結(jié)果。過猶不及皆非所欲,唯有恰到好處才能正中下懷皆大歡喜。
上述簡單的生活細節(jié),正可用以說明方波(Square Wave)訊號(Signal)在多層板傳輸線(Transmission Line,系由訊號線、介質(zhì)層、及接地層三者所共同組成)中所進行的快速傳送。此時可將傳輸線(常見者有同軸電纜Coaxial Cable,與微帶線Microstrip Line或帶線Strip Line等)看成軟管,而握管處所施加的壓力,就好比板面上“接受端”(Receiver)元件所并聯(lián)到Gnd的電阻器一般,可用以調(diào)節(jié)其終點的特性阻抗(Characteristic Impedance),使匹配接受端元件內(nèi)部的需求。