在磁流體力學(xué)中,等離子體可以看作是良導(dǎo)體,電磁場變化的特征時間遠遠大于粒子碰撞的時間,電磁場可以認為是準(zhǔn)靜態(tài)的,因此麥克斯韋方程組中的位移電流項可以忽略,寫為:
由于存在洛倫茲力,歐姆定律的廣義形式為:
半導(dǎo)體磁流體動力學(xué)模型是一類出現(xiàn)在半導(dǎo)體器件科學(xué)中的宏觀流體動力學(xué)方程組,它是在自相容電磁場的影響下描述電子和離子的,刻畫了高頻率條件下運轉(zhuǎn)的半導(dǎo)體器件其內(nèi)部電了的輸運過程。模型方程組是由電子的質(zhì)量和速度的守恒律方程禍合電磁場的Maxwell方程構(gòu)成的。
目前對半導(dǎo)體磁流體動力學(xué)模型已經(jīng)有非常多的研究。就半導(dǎo)體磁流體動力學(xué)模型方程組的類型而言,它是一類可對稱化的擬線性雙曲型方程組。一般來說,哪怕是在光滑的小初始條件下,擬線性雙曲型方程組的經(jīng)典解仍會在有限時問內(nèi)破裂而產(chǎn)生激波。
研究磁流體運動性質(zhì)的科學(xué),又稱流體磁學(xué) (hydromagnetics) 或 磁氣動力學(xué) ( magnetogas dynamics)。動力學(xué)的分支,電動力學(xué)和流體動力學(xué)的交叉學(xué)科。研究對象是與磁場相互作用的流體運動。
磁流體動力學(xué)的主要研究內(nèi)容:①液態(tài)金屬的運動性質(zhì);②電離氣體或等離子體流動性的理論研究及應(yīng)用研究。包括受控?zé)岷朔磻?yīng)、超聲飛行條件的模擬、對外空間推進的離子動力、重返大氣層的空間飛 行器的制動、高能粒子加速器、微波發(fā)生器、熱離子 能量轉(zhuǎn)換裝置、薄金屬敷層的應(yīng)用以及宇宙和上層大 氣現(xiàn)象的研究等。
可用三種等價但形式不同的方法建立,即:①利用達朗伯原理引進慣性力,根據(jù)作用在體系或其微元體上全部力的平衡條件直接寫出運動方程;②利用廣義坐標(biāo)寫出系統(tǒng)的動能、勢能、阻尼耗散函數(shù)及廣義力表達式,根據(jù)哈密頓...
體對來自導(dǎo)線、電纜、元部件、電路或系統(tǒng)等外部的干擾電磁波和內(nèi)部電磁波均起著吸收能量(渦流損耗)、反射能量(電磁波在體上的界面反射)和抵消能量(電磁感應(yīng)在層上產(chǎn)生反向電磁場,可抵消部分干擾電磁波)的作用...
因為重力是不變的,彈力是與位移X有關(guān),當(dāng)這兩個力同時取微分后,重力的微分為零,導(dǎo)致公式中就沒有重力了。能量對時間的導(dǎo)數(shù)是能量隨時間的變化,能量對距離的導(dǎo)數(shù)是能量隨距離的變化。可以用能量法和牛頓二定律。...
磁流體力學(xué)的基本方程組有16個標(biāo)量方程,包含16個未知標(biāo)量,因此是完備的。結(jié)合邊界條件可以求解這個方程組。在磁流體動力學(xué)中,等離子體可以看作是良導(dǎo)體,電磁場變化的特征時間遠遠大于粒子碰撞的時間,電磁場可以認為是準(zhǔn)靜態(tài)的,因此麥克斯韋方程組中的位移電流項可以忽略,寫為:由于存在洛侖茲力,歐姆定律的數(shù)學(xué)形式為:等離子體是流體,滿足流體的連續(xù)性方程:流體的運動方程的右邊應(yīng)加上電磁力項,而重力與電磁力相比是小量,常常也可以忽略不計。因此運動方程為:其中能量方程的右邊應(yīng)加上因電磁場引起的焦耳熱,重力所做的功可以忽略不計。
流體的狀態(tài)方程形式為:
p = p(ρ,T)對于絕熱過程,有pρ ? γ = const 理想磁流體力學(xué)方程組對于無粘、絕熱、理想導(dǎo)電的等離子體,即理想導(dǎo)電流體,磁流體力學(xué)方程可以簡化為:pρ ? γ = const ,其稱為理想磁流體力學(xué)方程組,即 pρ ? γ = const。
磁流體動力學(xué)主要應(yīng)用于三個方面:天體物理、受控?zé)岷朔磻?yīng)和工業(yè)。
宇宙中恒星和星際氣體都是等離子體,而且有磁場,故磁流體力學(xué)首先在天體物理、太陽物理和地球物理中得到發(fā)展和應(yīng)用。當(dāng)前,關(guān)于太陽的研究課題有:太陽磁場的性質(zhì)和起源,磁場對日冕、黑子、耀斑的影響。此外還有:星際空間無作用力場存在的可能性,太陽風(fēng)與地球磁場相互作用產(chǎn)生的弓形激波,新星、超新星的爆發(fā),地球磁場的起源,等等。
受控?zé)岷朔綉?yīng)方面 這方面的應(yīng)用有可能使人類從海水中的氘獲取巨大能源。受控?zé)岷朔磻?yīng)的目的就是把輕元素組成的氣體加熱到足夠發(fā)生核聚變的高溫,并約束它足夠的時間,以使核反應(yīng)產(chǎn)生的能量大于所消耗的能量。對氘、氚混合氣來說,要求溫度達到5000萬到1億開并要求粒子密度和約束時間的乘積不小于10秒/厘米(勞孫條件)。托卡馬克(環(huán)形磁約束裝置)在受控?zé)岷朔磻?yīng)研究中顯出優(yōu)越性。美、蘇和一些西歐國家各自在托卡馬克的研究上取得進展,但只得到單項指標(biāo)滿足勞孫條件的等離子體,沒有得到溫度、密度和約束時間都滿足勞孫條件的等離子體。磁鏡、托卡馬克和其他磁約束裝置的運行范圍都受穩(wěn)定性的限制,即電流或粒子密度越大,穩(wěn)定性越差,所以必須開展對等離子體中的平衡和大尺度不穩(wěn)定性預(yù)測的磁流體力學(xué)研究,以期得到穩(wěn)定的并充分利用磁場的托卡馬克磁約束裝置。
磁流體力學(xué)除了與開發(fā)和利用核聚變能有關(guān)外,還與磁流體發(fā)電密切聯(lián)系。磁流體發(fā)電的原理是用等離子體取代發(fā)電機轉(zhuǎn)子,省去轉(zhuǎn)動部件,這樣可以把普通火力發(fā)電站或核電站的效率提高15?20%,甚至更高,既可節(jié)省能源,又能減輕污染。為了提高磁流體發(fā)電裝罝的熱效率,必須運用磁流體力學(xué)來分析發(fā)電通道中的流動規(guī)律,傳熱、傳質(zhì)規(guī)律和電特性。研究利用煤粉作燃料的磁流體發(fā)電對產(chǎn)煤豐富的國家有重要意義,這種研究目前正向工業(yè)發(fā)電階段發(fā)展。蘇聯(lián)已實現(xiàn)天然氣磁流體發(fā)電。
用導(dǎo)電流體取代電動機轉(zhuǎn)子的設(shè)備,即用磁力驅(qū)動導(dǎo)電流體的裝置有電磁泵和磁流體力學(xué)空間推進器(見電磁推進)。電磁泵已用于核能動力裝置中傳熱回路內(nèi)液態(tài)金屬的傳輸,冶金和鑄造工業(yè)中熔融金屬的自動定量澆注和攪拌,化學(xué)工業(yè)中汞、鉀、鈉等有害和危險流體的輸送等方面。電磁推進研究用磁場力加速等離子體以期得到比化學(xué)火箭大得多的比沖。
飛行器再入大氣層時,激波、空氣對飛行器的摩擦,使飛行器的表面空氣受熱而電離成為等離子體,因此利用磁場可以控制對飛行器的傳熱和阻力。但由于磁場裝置過重,這種設(shè)想尚未能實現(xiàn)。2100433B
格式:ppt
大?。?span id="hnypyta" class="single-tag-height">2.8MB
頁數(shù): 未知
評分: 3
[PPT]理想流體動力學(xué)——理想流體動力學(xué)演示稿 注:共80頁幻燈片
格式:pdf
大?。?span id="ftyxq5b" class="single-tag-height">2.8MB
頁數(shù): 7頁
評分: 4.5
考慮電弧的物理參數(shù)以及電磁、熱和輻射等現(xiàn)象,通過對商用計算流體力學(xué)軟件FLUENT進行二次開發(fā),建立了空氣開關(guān)電弧等離子體的二維磁流體動力學(xué)(MHD)數(shù)學(xué)模型。然后仿真分析了電弧半徑、電場強度與電流之間的關(guān)系,以及外部磁場對電弧運動過程的影響。同時完成了相關(guān)的實驗研究。結(jié)果表明隨著電流的增大,電弧半徑將受到器壁寬度的限制;電流對電場強度的影響很小;外部磁場在加速電弧運動的同時,產(chǎn)生的"磁壓"會導(dǎo)致電弧高溫區(qū)不斷被壓縮以及局部壓力的升高。
磁流體力學(xué)是結(jié)合經(jīng)典流體力學(xué)和電動力學(xué)的方法,研究導(dǎo)電流體和磁場相互作用的學(xué)科,它包括磁流體靜力學(xué)和磁流體動力學(xué)兩個分支。
磁流體靜力學(xué)研究導(dǎo)電流體在磁場力作用于靜平衡的問題;磁流體動力學(xué)研究導(dǎo)電流體與磁場相互作用的動力學(xué)或運動規(guī)律。磁流體力學(xué)通常指磁流體動力學(xué),而磁流體靜力學(xué)被看作磁流體動力學(xué)的特殊情形。
導(dǎo)電流體有等離子體和液態(tài)金屬等。等離子體是電中性電離氣體,含有足夠多的自由帶電粒子,所以它的動力學(xué)行為受電磁力支配。宇宙中的物質(zhì)幾乎全都是等離子體,但對地球來說,除大氣上層的電離層和輻射帶是等離子體外,地球表面附近(除閃電和極光外)一般不存在自然等離子體,但可通過氣體放電、燃燒、電磁激波管、相對論電子束和激光等方法產(chǎn)生人工等離子體。
能應(yīng)用磁流體力學(xué)處理的等離子體溫度范圍頗寬,從磁流體發(fā)電的幾千度到受控?zé)岷朔磻?yīng)的幾億度量級(還沒有包括固體等離子體)。因此,磁流體力學(xué)同物理學(xué)的許多分支以及核能、化學(xué)、冶金、航天等技術(shù)科學(xué)都有聯(lián)系。
磁流體是一種膠體溶液。作為密封用的磁流體,其性能要求是:穩(wěn)定性好,不凝聚、不沉淀、不分解;飽和磁化強度高;起始磁導(dǎo)率大;粘度和飽和蒸氣低,其他如凝固點、沸點、導(dǎo)熱率、比熱和表面張力等也有一定的要求。
影響磁流體穩(wěn)定的主要因素有:微粒力度大小、表面活性劑和載液以及它們的合理配比。穩(wěn)定性是磁流體各種特性存在的前提。
磁流體密封裝置是由不導(dǎo)磁座、軸承、磁極、永久磁鐵、導(dǎo)磁軸、磁流體組成,在均勻穩(wěn)定磁場的作用下,使磁流體充滿于設(shè)定的空間內(nèi),建立起多級“O型密封圈”,從而達到密封的效果;每級密封圈一般可以承受大于0.15~0.2個大氣壓的壓差??偝袎簽楦骷墘翰钪?,一般設(shè)計為2.5個大氣壓,總體耐壓隨液態(tài)“O”形圈的級數(shù)增加而增加。被世界各國廣泛公認的“零泄漏”動密封先進技術(shù)。
導(dǎo)電流體在電磁場里運動時,流體中就會產(chǎn)生電流。此電流與磁場相互作用,產(chǎn)生洛倫茲力,從而改變流體的運動,同時此電流又導(dǎo)致電磁場的改變。對這類問題進行理論探討,必須既考慮其力學(xué)效應(yīng),又考慮其電磁效應(yīng)。磁流體力學(xué)包括磁流體靜力學(xué)和磁流體動力學(xué)。磁流體靜力學(xué)研究導(dǎo)電流體在電磁力作用下的靜平衡問題,如太陽黑子理論、受控?zé)岷司圩兊拇偶s束機制等。磁流體動力學(xué)研究導(dǎo)電流體與電磁場相互作用時的運動規(guī)律,如各種磁流體動力學(xué)流動和磁流體動力學(xué)波等。但磁流體力學(xué)通常即指磁流體動力學(xué),而磁流體靜力學(xué)被看作磁流體動力學(xué)的特殊情形。
等離子體和液態(tài)金屬都是導(dǎo)電流體。等離子體包括99%以上的宇宙物質(zhì),等離子體是電中性電離氣體,含有足夠多的自由帶電粒子,所以它的動力學(xué)行為受電磁力支配。后者包括核動力裝置中的攜熱介質(zhì)(如鈉、鉀、鈉鉀合金)、化學(xué)工業(yè)中的置換劑(如鈉、鉀、汞)、冶金鑄造工業(yè)中的熔融金屬等。地球表面一般不存在自然等離子體,但可因核輻射、氣體放電、燃燒、電磁激波、激光等方法產(chǎn)生人工等離子體。因此,磁流體力學(xué)不僅與等離子體物理學(xué)有聯(lián)系,還在天體物理研究(如磁場對日冕、黑子、耀斑的影響)、受控?zé)岷司圩兒凸I(yè)新技術(shù)(如電磁泵、電弧加熱器、磁流體發(fā)電、電磁輸送、電磁推進等)中得到發(fā)展和應(yīng)用。