書????名 | 誤差理論與數(shù)據(jù)處理(苐7版) | 作????者 | 費(fèi)業(yè)泰 |
---|---|---|---|
出版社 | 機(jī)械工業(yè)出版社 | 出版時(shí)間 | 2019年11月 |
定????價(jià) | 32 元 | 開????本 | 16 開 |
裝????幀 | 平裝 | ISBN | 9787111495246 |
前言
第一章緒論1
第一節(jié)研究誤差的意義1
第二節(jié)誤差的基本概念1
一、誤差的定義及表示法1
二、誤差來源3
三、誤差分類4
第三節(jié)精度5
第四節(jié)有效數(shù)字與數(shù)據(jù)運(yùn)算7
一、有效數(shù)字7
二、數(shù)字舍入規(guī)則8
三、數(shù)據(jù)運(yùn)算規(guī)則8
習(xí)題9
第二章誤差的基本性質(zhì)與處理10
第一節(jié)隨機(jī)誤差10
一、隨機(jī)誤差的產(chǎn)生原因10
二、正態(tài)分布10
三、算術(shù)平均值11
四、測(cè)量的標(biāo)準(zhǔn)差14
五、測(cè)量的極限誤差21
六、不等精度測(cè)量23
七、隨機(jī)誤差的其他分布28
第二節(jié)系統(tǒng)誤差33
一、系統(tǒng)誤差的產(chǎn)生原因34
二、系統(tǒng)誤差的特征34
三、系統(tǒng)誤差的發(fā)現(xiàn)36
四、系統(tǒng)誤差的減小和消除42
第三節(jié)粗大誤差44
一、粗大誤差的產(chǎn)生原因45
二、防止與消除粗大誤差的方法45
三、判別粗大誤差的準(zhǔn)則45
第四節(jié)測(cè)量結(jié)果的數(shù)據(jù)處理實(shí)例52
一、等精度直接測(cè)量列測(cè)量結(jié)果的
數(shù)據(jù)處理實(shí)例52
二、不等精度直接測(cè)量列測(cè)量結(jié)果
的數(shù)據(jù)處理實(shí)例54
習(xí)題56
第三章誤差的合成與分配59
第一節(jié)函數(shù)誤差59
一、函數(shù)系統(tǒng)誤差計(jì)算59
二、函數(shù)隨機(jī)誤差計(jì)算62
三、誤差間的相關(guān)關(guān)系和相關(guān)系數(shù)65
第二節(jié)隨機(jī)誤差的合成67
一、標(biāo)準(zhǔn)差的合成68
二、極限誤差的合成68
第三節(jié)系統(tǒng)誤差的合成69
一、已定系統(tǒng)誤差的合成69
二、未定系統(tǒng)誤差的合成70
第四節(jié)系統(tǒng)誤差與隨機(jī)誤差的合成72
一、按極限誤差合成72
二、按標(biāo)準(zhǔn)差合成72
第五節(jié)誤差分配75
一、按等作用原則分配誤差75
二、按可能性調(diào)整誤差76
三、驗(yàn)算調(diào)整后的總誤差76
第六節(jié)微小誤差的取舍準(zhǔn)則77
第七節(jié)最佳測(cè)量方案的確定78
一、選擇最佳函數(shù)誤差公式79
二、使誤差傳遞系數(shù)等于零或?yàn)樽钚?0
習(xí)題81
第四章測(cè)量不確定度83
第一節(jié)測(cè)量不確定度的基本概念83
一、概述83
二、測(cè)量不確定度定義83
三、測(cè)量不確定度與誤差84
第二節(jié)標(biāo)準(zhǔn)不確定度的評(píng)定84
一、標(biāo)準(zhǔn)不確定度的A類評(píng)定84
二、標(biāo)準(zhǔn)不確定度的B類評(píng)定84
三、自由度及其確定86
第三節(jié)測(cè)量不確定度的合成88
一、合成標(biāo)準(zhǔn)不確定度88
二、展伸不確定度89
三、不確定度的報(bào)告89
第四節(jié)測(cè)量不確定度應(yīng)用實(shí)例91
一、測(cè)量不確定度計(jì)算步驟91
二、體積測(cè)量的不確定度計(jì)算91
三、濕度計(jì)檢定的不確定度計(jì)算93
四、黏度測(cè)量的不確定度計(jì)算94
五、量塊校準(zhǔn)的不確定度計(jì)算95
六、砝碼校準(zhǔn)的不確定度計(jì)算98
習(xí)題99
第五章線性測(cè)量的參數(shù)最小二乘法
處理101
第一節(jié)最小二乘法原理101
第二節(jié)正規(guī)方程106
一、等精度線性測(cè)量參數(shù)最小二乘
法處理的正規(guī)方程106
二、不等精度線性測(cè)量參數(shù)最小二
乘法處理的正規(guī)方程110
三、非線性測(cè)量參數(shù)最小二乘法處理的
正規(guī)方程113
四、最小二乘原理與算術(shù)平均值原
理的關(guān)系114
第三節(jié)精度估計(jì)115
一、測(cè)量數(shù)據(jù)的精度估計(jì)115
二、最小二乘估計(jì)量的精度估計(jì)117
第四節(jié)組合測(cè)量的最小二乘法處理123
習(xí)題129
第六章回歸分析131
第一節(jié)回歸分析的基本概念131
一、函數(shù)與相關(guān)131
二、回歸分析的主要內(nèi)容132
三、回歸分析與最小二乘的關(guān)系132
第二節(jié)一元線性回歸132
一、一元線性回歸方程132
二、回歸方程的方差分析及顯著性
檢驗(yàn)136
三、重復(fù)實(shí)驗(yàn)情況139
四、回歸直線的簡便求法143
第三節(jié)兩個(gè)變量都具有誤差時(shí)線性
回歸方程的確定145
一、概述145
二、回歸方程的求法146
第四節(jié)一元非線性回歸148
一、回歸曲線函數(shù)類型的選取和檢驗(yàn)148
二、化曲線回歸為直線回歸問題151
三、回歸曲線方程的效果與精度153
第五節(jié)多元線性回歸154
一、多元線性回歸方程154
二、回歸方程的顯著性和精度163
三、每個(gè)自變量在多元回歸中所起
的作用164
習(xí)題166
第七章動(dòng)態(tài)測(cè)試數(shù)據(jù)處理的基本
方法169
第一節(jié)動(dòng)態(tài)測(cè)試基本概念169
一、動(dòng)態(tài)測(cè)試169
二、動(dòng)態(tài)測(cè)試數(shù)據(jù)的分類169
第二節(jié)隨機(jī)過程及其特征173
一、研究隨機(jī)過程理論的實(shí)際意義173
二、隨機(jī)過程的基本概念174
三、隨機(jī)過程的特征量175
第三節(jié)隨機(jī)過程特征量的實(shí)際估計(jì)185
一、平穩(wěn)隨機(jī)過程及其特征量185
二、各態(tài)歷經(jīng)隨機(jī)過程及其特征量190
三、非平穩(wěn)過程的隨機(jī)函數(shù)193
第四節(jié)動(dòng)態(tài)測(cè)試誤差及其評(píng)定196
一、概述196
二、動(dòng)態(tài)測(cè)試數(shù)據(jù)預(yù)處理199
三、動(dòng)態(tài)測(cè)試誤差分離200
四、動(dòng)態(tài)測(cè)試誤差的評(píng)定202
習(xí)題206
附錄209
附表1正態(tài)分布積分表209
附表2χ2分布表209
附表3t分布表210
附表4F分布表210
參考文獻(xiàn)2142100433B
本書是全國高等學(xué)校首次出版使用的《誤差理論與數(shù)據(jù)處理》教材,自1981年出版第1版以來,深受高等學(xué)校和科研院所歡迎使用,32年間共再版6次,本書為第7版。第7版教材在保持原有教材特色基礎(chǔ)上,對(duì)部分內(nèi)容作適當(dāng)修改。本書7版講述科學(xué)實(shí)驗(yàn)和工程實(shí)踐中常用的靜態(tài)測(cè)量和動(dòng)態(tài)測(cè)量的誤差理論和數(shù)據(jù)處理,并結(jié)合常見的物理量測(cè)量進(jìn)行介紹,內(nèi)容包括:緒論、誤差的基本性質(zhì)與處理、誤差的合成與分配、測(cè)量不確定度、線性參數(shù)的小二乘法處理、回歸分析、動(dòng)態(tài)測(cè)試與數(shù)據(jù)處理基本方法等。各章附有大量習(xí)題供選用,書末附錄為常用數(shù)表。
以實(shí)體檢測(cè)數(shù)據(jù)為準(zhǔn)!但實(shí)體檢測(cè)的數(shù)據(jù)應(yīng)該由具有相關(guān)資質(zhì)的檢測(cè)單位出具。
螺旋焊管重量理論與實(shí)際 應(yīng)該是 沒有 差別的。焊條及油漆重量 與實(shí)際施工方法和 油漆的種類 有關(guān)。
關(guān)于地層劃分,時(shí)代確定與土工數(shù)據(jù)處理
時(shí)代看區(qū)域地質(zhì)資料!土層劃分按規(guī)范,參數(shù)匹配!變異系數(shù)除力學(xué)指標(biāo)外不大于0.3!剖面線符合沉積規(guī)律,參考地貌構(gòu)造!
格式:pdf
大?。?span id="4m3tor2" class="single-tag-height">374KB
頁數(shù): 17頁
評(píng)分: 4.8
1-10 檢定 2.5 級(jí)(即引用誤差為 2.5%)的全量程為 100V 的電壓表,發(fā)現(xiàn) 50V刻度點(diǎn)的示值誤差 2V為最大誤差,問該電壓表是否合格? %5.22%100% 100 2 100% 測(cè)量范圍上限 某量程最大示值誤差 最大引用誤差 該電壓表合格 1-12 用兩種方法分別測(cè)量 L1=50mm, L2=80mm。測(cè)得值各為 50.004mm, 80.006mm。試評(píng)定兩種方法測(cè)量精度的高低。 相對(duì)誤差 L 1:50mm 0.008%100% 50 50004.50 1I L 2:80mm 0.0075%100% 80 80006.80 2I 21 II 所以 L2=80mm 方法測(cè)量精度高。 1-13 多級(jí)彈導(dǎo)火箭的射程為 10000km時(shí),其射擊偏離預(yù)定點(diǎn)不超過 0.lkm , 優(yōu)秀射手能在距離 50m遠(yuǎn)處準(zhǔn)確地射中直徑為 2cm的靶心,試評(píng)述哪一個(gè)射 擊精度高 ? 解: 多級(jí)
格式:pdf
大?。?span id="f9rcivq" class="single-tag-height">374KB
頁數(shù): 14頁
評(píng)分: 4.6
啊啦啦啦啦 1-10 檢定 2.5 級(jí)(即引用誤差為 2.5%)的全量程為 100V的電壓表,發(fā)現(xiàn) 50V 刻度點(diǎn)的示值誤差 2V為最大誤差,問該電壓表是否合格? %5.22%100% 100 2 100% 測(cè)量范圍上限 某量程最大示值誤差 最大引用誤差 該電壓表合格 1-12 用兩種方法分別測(cè)量 L1=50mm,L2=80mm。測(cè)得值各為 50.004mm,80.006mm。試評(píng)定兩種方法 測(cè)量精度的高低。 相對(duì)誤差 L 1 :50mm 0.008%100% 50 50004.50 1I L 2 :80mm 0.0075%100% 80 80006.80 2I 21 II 所以 L 2=80mm方法測(cè)量精度高。 1-13 多級(jí)彈導(dǎo)火箭的射程為 10000km時(shí),其射擊偏離預(yù)定點(diǎn)不超過 0.lkm ,優(yōu)秀射手能在距離 50m 遠(yuǎn)處準(zhǔn)確地射中直徑為 2cm的靶心,試評(píng)述哪一個(gè)射擊精度高 ?
誤差理論與測(cè)量數(shù)據(jù)處理原理方法是大地測(cè)量學(xué)與測(cè)繪工程本科專業(yè)一門重要的專業(yè)基礎(chǔ)課,它是測(cè)繪類數(shù)據(jù)處理的理論基礎(chǔ),也是攻讀測(cè)繪類碩士學(xué)位的一門必修課程。本書是編者總結(jié)多年測(cè)量平差教學(xué)和測(cè)繪數(shù)據(jù)處理實(shí)踐方面的經(jīng)驗(yàn),根據(jù)測(cè)繪、遙感和地理信息系統(tǒng)專業(yè)的教學(xué)要求,在原《誤差理論與測(cè)量平差基礎(chǔ)》講義的基礎(chǔ)上編寫而成。本書在內(nèi)容的安排上,強(qiáng)調(diào)了誤差基本理論和測(cè)量平差基礎(chǔ)兩個(gè)方向的特色,在能力的培養(yǎng)上,加強(qiáng)了測(cè)量基本模型的建立、算法設(shè)計(jì)和解算技巧的結(jié)合
第6版前言
第5版前言
第一章緒論1
第一節(jié)研究誤差的意義1
第二節(jié)誤差的基本概念1
一、誤差的定義及表示法1
二、誤差來源3
三、誤差分類4
第三節(jié)精度5
第四節(jié)有效數(shù)字與數(shù)據(jù)運(yùn)算7
一、有效數(shù)字7
二、數(shù)字舍入規(guī)則8
三、數(shù)據(jù)運(yùn)算規(guī)則8
習(xí)題9
第二章誤差的基本性質(zhì)與處理10
第一節(jié)隨機(jī)誤差10
一、隨機(jī)誤差的產(chǎn)生原因10
二、正態(tài)分布10
三、算術(shù)平均值11
四、測(cè)量的標(biāo)準(zhǔn)差14
五、測(cè)量的極限誤差21
六、不等精度測(cè)量23
七、隨機(jī)誤差的其他分布27
第二節(jié)系統(tǒng)誤差33
一、系統(tǒng)誤差的產(chǎn)生原因33
二、系統(tǒng)誤差的特征34
三、系統(tǒng)誤差的發(fā)現(xiàn)35
四、系統(tǒng)誤差的減小和消除41
第三節(jié)粗大誤差44
一、粗大誤差的產(chǎn)生原因44
二、防止與消除粗大誤差的方法44
三、判別粗大誤差的準(zhǔn)則44
第四節(jié)測(cè)量結(jié)果的數(shù)據(jù)處理實(shí)例51
一、等精度直接測(cè)量列測(cè)量結(jié)果的
數(shù)據(jù)處理實(shí)例51
二、不等精度直接測(cè)量列測(cè)量結(jié)果
的數(shù)據(jù)處理實(shí)例53
習(xí)題54
第三章誤差的合成與分配57
第一節(jié)函數(shù)誤差57
一、函數(shù)系統(tǒng)誤差計(jì)算57
二、函數(shù)隨機(jī)誤差計(jì)算60
三、誤差間的相關(guān)關(guān)系和相關(guān)系數(shù)63
第二節(jié)隨機(jī)誤差的合成66
一、標(biāo)準(zhǔn)差的合成66
二、極限誤差的合成66
第三節(jié)系統(tǒng)誤差的合成67
一、已定系統(tǒng)誤差的合成67
二、未定系統(tǒng)誤差的合成68
第四節(jié)系統(tǒng)誤差與隨機(jī)誤差的合成70
一、按極限誤差合成70
二、按標(biāo)準(zhǔn)差合成70
第五節(jié)誤差分配73
一、按等作用原則分配誤差74
二、按可能性調(diào)整誤差74
三、驗(yàn)算調(diào)整后的總誤差74
第六節(jié)微小誤差的取舍準(zhǔn)則75
第七節(jié)最佳測(cè)量方案的確定76
一、選擇最佳函數(shù)誤差公式77
二、使誤差傳遞系數(shù)等于零或?yàn)樽钚?8
習(xí)題80
第四章測(cè)量不確定度82
第一節(jié)測(cè)量不確定度的基本概念82
一、概述82
二、測(cè)量不確定度定義82
三、測(cè)量不確定度與誤差83
第二節(jié)標(biāo)準(zhǔn)不確定度的評(píng)定83
一、標(biāo)準(zhǔn)不確定度的A類評(píng)定83
二、標(biāo)準(zhǔn)不確定度的B類評(píng)定83
三、自由度及其確定85
第三節(jié)測(cè)量不確定度的合成87
一、合成標(biāo)準(zhǔn)不確定度87
二、展伸不確定度88
三、不確定度的報(bào)告88
第四節(jié)測(cè)量不確定度應(yīng)用實(shí)例90
一、測(cè)量不確定度計(jì)算步驟90
二、體積測(cè)量的不確定度計(jì)算90
三、濕度計(jì)檢定的不確定度計(jì)算92
四、粘度測(cè)量的不確定度計(jì)算93
五、量塊校準(zhǔn)的不確定度計(jì)算94
六、砝碼校準(zhǔn)的不確定度計(jì)算97
習(xí)題98
第五章線性參數(shù)的最小二乘法
處理100
第一節(jié)最小二乘法原理100
第二節(jié)正規(guī)方程105
一、等精度測(cè)量線性參數(shù)最小二乘
法處理的正規(guī)方程105
二、不等精度測(cè)量線性參數(shù)最小二
乘法處理的正規(guī)方程109
三、非線性參數(shù)最小二乘法處理的
正規(guī)方程112
四、最小二乘原理與算術(shù)平均值原
理的關(guān)系113
第三節(jié)精度估計(jì)114
一、測(cè)量數(shù)據(jù)的精度估計(jì)114
二、最小二乘估計(jì)量的精度估計(jì)116
第四節(jié)組合測(cè)量的最小二乘法處理122
習(xí)題125
第六章回歸分析127
第一節(jié)回歸分析的基本概念127
一、函數(shù)與相關(guān)127
二、回歸分析的主要內(nèi)容128
三、回歸分析與最小二乘的關(guān)系128
第1章 緒 論 001
1.1 測(cè)量平差基本概念 001
1.2 測(cè)量誤差分類 004
1.3 測(cè)量平差簡史 006
1.4 本書的主要內(nèi)容 008
第2章 測(cè)量誤差的基本知識(shí) 009
2.1 偶然誤差的規(guī)律 009
2.2 衡量精度的指標(biāo) 012
2.3 精度、準(zhǔn)確度與精確度 024
第3章 誤差傳播定律 027
3.1 協(xié)方差傳播律 027
3.2 廣義傳播律 031
3.3 廣義傳播律在測(cè)量中的應(yīng)用 034
第4章 平差數(shù)學(xué)模型與最小二乘原理 043
4.1 測(cè)量平差概述 043
4.2 測(cè)量平差的函數(shù)模型 045
4.3 函數(shù)模型的線性化 050
4.4 測(cè)量平差的數(shù)學(xué)模型 053
4.5 參數(shù)估計(jì)與最小二乘原理 054
第5章 條件平差 059
5.1 最小二乘原理下的條件平差解算 059
5.2 各類條件方程式列立 062
5.3 精度評(píng)定 072
第6章 附有參數(shù)的條件平差 079
6.1 基礎(chǔ)方程和它的解 080
6.2 精度評(píng)定 081
6.3 公式匯編 084
第7章 間接平差 085
7.1 間接平差原理 085
7.2 誤差方程 088
7.3 精度評(píng)定 098
7.4 公式匯編和示例 100
第8章 附有限制條件的間接平差 104
8.1 基礎(chǔ)方程及其解 104
8.2 精度評(píng)定 106
8.3 公式匯編和示例 108
第9章 附有限制條件的條件平差 112
9.1 基本平差方法的概括函數(shù)模型 112
9.2 附有限制條件的條件平差原理 113
9.3 精度評(píng)定 115
9.4 公式匯編和討論 117
9.5 平差結(jié)果的統(tǒng)計(jì)性質(zhì) 121
參考文獻(xiàn) 126